Bài 6: Cho tam giác ABC nhọn (AB<AC) có đường hai cao BH, CK . Gọi O là giao điểm của BH và CK.
a) Chứng minh tam giác OKB đồng dạng với tam giác OHC
b) Chứng minh AK . AB = AH . AC
Bài 15. Cho tam giác nhọn ABC có AB < AC, AD là tia phân giác của góc BAC. AE = AB, ED cắt AB tại F. Chứng minh:
a, Tam giác ADB = tam giác ADE
b, AF = AC
c, Tam giác DBF = tam giác DEC
a: Xét ΔADB và ΔADE có
AD chung
\(\widehat{BAD}=\widehat{EAD}\)
AB=AE
Do đó: ΔADB=ΔADE
b: Ta có: ΔADB=ΔADE
=>\(\widehat{ABD}=\widehat{AED}\)
=>\(\widehat{ABC}=\widehat{AEF}\)
Xét ΔEAF và ΔBAC có
\(\widehat{AEF}=\widehat{ABC}\)
AE=AB
\(\widehat{EAF}\) chung
Do đó: ΔEAF=ΔBAC
=>AF=AC
c: Ta có: AB+BF=AF
AE+EC=AC
mà AB=AE và AF=AC
nên BF=EC
Ta có: \(\widehat{ABD}+\widehat{FBD}=180^0\)(hai góc kề bù)
\(\widehat{AED}+\widehat{CED}=180^0\)(hai góc kề bù)
mà \(\widehat{ABD}=\widehat{AED}\)
nên \(\widehat{FBD}=\widehat{CED}\)
Ta có: ΔABD=ΔAED
=>DB=DE
Xét ΔDBF và ΔDEC có
DB=DE
\(\widehat{DBF}=\widehat{DEC}\)
BF=EC
Do đó: ΔDBF=ΔDEC
Bài 4: Cho tam giác ABC nhọn ( AB < AC ) . Đường cao AH . Gọi M; P; Q thứ tự là trung điểm của BC ; CA ; AB .
a) Chứng minh PQ là trung trực của AH .
b) Tứ giác MPQH là hình gì?
Bài 6: Cho tam giác ABC vuông tại A, có đường cao AH. Vẽ HE⊥AB; HF⊥AC (E∈AB; F∈AC). Gọi I là trung điểm của BC.
a) Chứng minh rằng: EF = AH.
b) AI ⊥ EF.
c) Gọi M là trung điểm của HB, N là trung điểm của HC. Chứng minh rằng EMNF là hình thang vuông.
Bài 6: Cho tam giác ABC có AB < AC. Kéo dài BA về phía A thêm 1 đoạn AM = AB, kéo dài CA về phía A thêm 1 đoạn AN = AC. Chứng minh rằng tam giác ABC = tam giác AMN
Bài 7: Cho \(\widehat{xOy}\) nhọn và tia Oz là tia phân giác của góc đó. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA = OB. Trên tia Oz lấy điểm I. Chứng minh:
a, Tam giác AOI = tam giác BOI
b, AB vuông góc với OI
Bài 3: Cho tam giác ABC nhọn. Kẻ AH vuông góc với BC. Biết AC = 20cm; AH = 12cm; HB = 5cm a/ Tính độ dài cạnh AB b/ Tính chu vi tam giác ABC
a) Xét ΔAHB vuông tại H áp dụng định lý Py-ta-go ta có:
\(AB^2=AH^2+HB^2\)
\(\Rightarrow AB=\sqrt{AH^2+HB^2}\)
\(\Rightarrow AB=\sqrt{12^2+5^2}=13\left(cm\right)\)
b) Xét ΔAHC vuông tại H áp dụng định lý Py-ta-go ta có:
\(AC^2=AH^2+HC^2\)
\(\Rightarrow HC=\sqrt{AC^2-AH^2}\)
\(\Rightarrow HC=\sqrt{20^2-12^2}=16\left(cm\right)\)
\(\Rightarrow BC=HB+HC=5+16=21\left(cm\right)\)
\(\Rightarrow C_{ABC}=BC+AB+AC=21+13+20=54\left(cm\right)\)
Bài 3 Cho hình tam giác ABC vuông tại B, đường cao BE. Tìm các góc nhọn của hình tam giác đó biết EC-EA=AB
Câu hỏi của nguyen huyen dieu - Toán lớp 7 - Học toán với OnlineMath
Bài 5: Cho tam giác ABC có ba góc nhọn, AB<AC. Kẻ BD vuông góc với AC tại D, CE vuông góc với AB tại E. Gọi H là giao điểm của BD và CE. So sánh độ dài HB và HC.
Bài 6: Cho tam giác ABC có AB<AC. Tia phân giác của góc B và C cắt nhau tại I. Từ I vẽ IH vuông góc với BC. So sánh độ dài HB và HC.
Câu hỏi là j vậy bn ?
what the hell??????
Bài 5: Cho tam giác ABC có ba góc nhọn, AB<AC. Kẻ BD vuông góc với AC tại D, CE vuông góc với AB tại E. Gọi H là giao điểm của BD và CE. So sánh độ dài HB và HC.
Bài 6: Cho tam giác ABC có AB<AC. Tia phân giác của góc B và C cắt nhau tại I. Từ I vẽ IH vuông góc với BC. So sánh độ dài HB và HC.
~~~Đây,các bạn giúp mk vs~~~
Bài 5: Cho tam giác ABC có ba góc nhọn, AB<AC. Kẻ BD vuông góc với AC tại D, CE vuông góc với AB tại E. Gọi H là giao điểm của BD và CE. So sánh độ dài HB và HC.
Bài 6: Cho tam giác ABC có AB<AC. Tia phân giác của góc B và C cắt nhau tại I. Từ I vẽ IH vuông góc với BC. So sánh độ dài HB và HC.
Bài 5: Cho tam giác ABC có ba góc nhọn, AB<AC. Kẻ BD vuông góc với AC tại D, CE vuông góc với AB tại E. Gọi H là giao điểm của BD và CE. So sánh độ dài HB và HC.
Bài 6: Cho tam giác ABC có AB<AC. Tia phân giác của góc B và C cắt nhau tại I. Từ I vẽ IH vuông góc với BC. So sánh độ dài HB và HC.
Bạn viết đề bài cho đầy đủ chứ -.-
~ Vào thông kê của bạn ý là thấy đề ~
Bài 5:
Bài làm
Xét tam giác ABC có:
AB < AC (gt)
=> \(\widehat{ABC}>\widehat{ACB}\)( Quan hệ giữa góc và cạnh đối diện ) (1)
Xét tam giác EBC vuông ở E có:
\(\widehat{ABC}+\widehat{ECB}=90^0\) (2)
Xét tam giác DBC vuông ở D có:
\(\widehat{ACB}+\widehat{DBC}=90^0\) (3)
Từ (1) , (2) và (3) => \(\widehat{ECB}< \widehat{DBC}\)
Xét tam giác HBC có:
\(\widehat{ECB}< \widehat{DBC}\) ( theo quan hệ giữa góc và cạnh đối diện có )
BH < HC
Vậy BH < HC
Bài 6
Bài làm:
Xét tam giác ABC có:
AB < AC ( gt )
\(\widehat{ABC}>\widehat{ACB}\)( quan hệ giữa góc và cạnh đối diện ) (1)
Mà BI là phân giác góc ABC
=> \(\frac{1}{2}\widehat{ABC}=\widehat{ABI}=\widehat{IBC}\) (2)
Và CI là phân giác góc ACB
=> \(\frac{1}{2}\widehat{ACB}=\widehat{ACI}=\widehat{ICB}\) (3)
Từ (1), (2) và (3) => \(\widehat{ABI}=\widehat{IBC}>\widehat{ACI}=\widehat{ICB}\) (4)
Xét tam giác IHB vuông ở H có:
\(\widehat{IBC}+\widehat{BIH}=90^0\) (5)
Xét tam giác IHC vuông ở H có:
\(\widehat{ICB}+\widehat{CIH}=90^0\) (6)
Từ (4), (5) và (6) => \(\widehat{BIH}< \widehat{CIH}\)
Xét tam giác IBC có:
\(\widehat{BIH}< \widehat{CIH}\)( Theo quan hệ giữa góc đối và cạnh đối diện có: )
BH < HC
Vậy BH < HC
# Học tốt #
Cho tam giác nhọn ABC, các đường cao AD, BE, CF cắt nhau tại H. Cho AE=3 cm, AB=6 cm
Chứng minh: Diện tích tam giác ABC= 4*Diện tích tam giác AEF
Bài 1: Cho tam giác ABC đều, cạnh AB=5cm. D thuộc tia CB sao cho góc ADC=40 độ. Hãy tính:
a) Đoạn thẳng AD
b) Đoạn thẳng BD
Bài 2: Cho tam giác ABC có AB=16cm, AC=14cm và góc B=60 độ.
a) Tính cạnh BC
b) Tính diện tích tam giác ABC
Bài 3: Cho tam giác nhọn ABC có BC=a, CA=b, AB=c. CMR:
\(b^2=a^2+c^2-2ac.cosB\)
làm bừa thui,ai tích mình mình tích lại
Số số hạng là :
Có số cặp là :
50 : 2 = 25 ( cặp )
Mỗi cặp có giá trị là :
99 - 97 = 2
Tổng dãy trên là :
25 x 2 = 50
Đáp số : 50
Bài 60. Cho tam giác nhọn ABC. Kẻ AH vuông góc với BC(H thuộc BC), cho biết AB=13,AH=12,hc=16 cm. Tính độ dài các cạnh của tam giác ABC.