Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Phương Thảo
Xem chi tiết
Nguyễn Việt Lâm
15 tháng 3 2020 lúc 23:29

\(a=\lim\limits_{x\rightarrow a}\frac{\left(\sqrt{x}-\sqrt{a}\right)\left(x+\sqrt{ax}+a\right)}{\sqrt{x}-\sqrt{a}}=\lim\limits_{x\rightarrow a}\left(x+\sqrt{ax}+a\right)=3a\)

\(b=\lim\limits_{x\rightarrow1}\frac{x^{\frac{1}{n}}-1}{x^{\frac{1}{m}}-1}=\lim\limits_{x\rightarrow1}\frac{\frac{1}{n}x^{\frac{1-n}{n}}}{\frac{1}{m}x^{\frac{1-m}{m}}}=\frac{\frac{1}{n}}{\frac{1}{m}}=\frac{m}{n}\)

Ta có:

\(\lim\limits_{x\rightarrow1}\frac{1-\sqrt[n]{x}}{1-x}=\lim\limits_{x\rightarrow1}\frac{1-x^{\frac{1}{n}}}{1-x}=\lim\limits_{x\rightarrow1}\frac{-\frac{1}{n}x^{\frac{1-n}{n}}}{-1}=\frac{1}{n}\)

\(\Rightarrow c=\lim\limits_{x\rightarrow1}\frac{\left(1-\sqrt{x}\right)}{1-x}.\frac{\left(1-\sqrt[3]{x}\right)}{\left(1-x\right)}.\frac{\left(1-\sqrt[4]{x}\right)}{\left(1-x\right)}.\frac{\left(1-\sqrt[5]{x}\right)}{\left(1-x\right)}=\frac{1}{2}.\frac{1}{3}.\frac{1}{4}.\frac{1}{5}=\frac{1}{120}\)

\(d=\lim\limits_{x\rightarrow+\infty}\frac{\sqrt{x+\sqrt{x}}}{\sqrt{x+\sqrt{x+\sqrt{x}}}+\sqrt{x}}=\lim\limits_{x\rightarrow+\infty}\frac{\sqrt{1+\frac{1}{\sqrt{x}}}}{\sqrt{1+\sqrt{\frac{1}{x}+\frac{1}{x\sqrt{x}}}}+1}=\frac{1}{2}\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
15 tháng 3 2020 lúc 23:37

\(e=\lim\limits_{x\rightarrow0}\frac{\sqrt{1+x}-1+1-\sqrt[3]{1+x}}{x}=\lim\limits_{x\rightarrow0}\frac{\frac{x}{\sqrt{1+x}+1}+\frac{x}{1+\sqrt[3]{1+x}+\sqrt[3]{\left(1+x\right)^2}}}{x}\)

\(=\lim\limits_{x\rightarrow0}\left(\frac{1}{\sqrt{1+x}+1}+\frac{1}{1+\sqrt[3]{1+x}+\sqrt[3]{\left(1+x\right)^2}}\right)=\frac{1}{2}+\frac{1}{3}=\frac{5}{6}\)

\(f=\lim\limits_{x\rightarrow2}\frac{\sqrt[3]{8x+11}-3+3-\sqrt{x+7}}{\left(x-1\right)\left(x-2\right)}=\lim\limits_{x\rightarrow2}\frac{\frac{8\left(x-2\right)}{\sqrt[3]{\left(8x+11\right)^2}+3\sqrt[3]{8x+11}+9}-\frac{x-2}{3+\sqrt{x+7}}}{\left(x-1\right)\left(x-2\right)}\)

\(=\lim\limits_{x\rightarrow2}\frac{\frac{8}{\sqrt[3]{\left(8x+11\right)^2}+3\sqrt[3]{8x+11}+9}-\frac{1}{3+\sqrt{x+7}}}{x-1}=\frac{8}{27}-\frac{1}{6}=\frac{7}{54}\)

\(g=\lim\limits_{x\rightarrow1}\frac{\sqrt[3]{3x-2}-1+1-\sqrt{2x-1}}{\left(x-1\right)\left(x^2+x+1\right)}=\lim\limits_{x\rightarrow1}\frac{\frac{3\left(x-1\right)}{\sqrt[3]{\left(3x-2\right)^2}+\sqrt[3]{3x-2}+1}-\frac{2\left(x-1\right)}{1+\sqrt{2x-1}}}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\lim\limits_{x\rightarrow1}\frac{\frac{3}{\sqrt[3]{\left(3x-2\right)^2}+\sqrt[3]{3x-2}+1}-\frac{2}{1+\sqrt{2x-1}}}{x^2+x+1}=0\)

\(h=\lim\limits_{x\rightarrow1}\frac{\sqrt[3]{x+9}+\sqrt[3]{2x-6}}{x^3+1}=\frac{\sqrt[3]{10}-\sqrt[3]{4}}{2}\)

Khách vãng lai đã xóa
camcon
Xem chi tiết
Rin Huỳnh
26 tháng 12 2023 lúc 12:37

\(\lim\limits_{x\rightarrow1}\dfrac{f\left(x\right)-2x+1}{x-1}=3\rightarrow\lim\limits_{x\rightarrow1}\left(f\left(x\right)-2x+1\right)=0\\ \rightarrow\lim\limits_{x\rightarrow1}f\left(x\right)=1\)

\(\lim\limits_{x\rightarrow1}\dfrac{\sqrt{3f\left(x\right)+1}-x-1}{\sqrt{4x+5}-3x-2}=\dfrac{\sqrt{3.1+1}-1-1}{\sqrt{4.1+5}-3.1-2}=0\)

Trần Minh
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 5 2021 lúc 21:24

Mấy câu này bạn cần giải theo kiểu trắc nghiệm hay tự luận nhỉ?

Trần Minh
14 tháng 5 2021 lúc 21:26

Em cần kiểu tự luận ạ

Nguyễn Việt Lâm
14 tháng 5 2021 lúc 21:46

Làm tự luận thì hơi tốn thời gian đấy (đi thi sẽ không bao giờ đủ thời gian đâu)

Câu 1:

Kiểm tra lại đề, \(\lim\limits_{x\rightarrow1}\dfrac{1}{\left(\sqrt[]{x}-1\right)g\left(x\right)}\) hay một trong 2 giới hạn sau: \(\lim\limits_{x\rightarrow1}\dfrac{\sqrt[]{x}-1}{g\left(x\right)}\) hoặc \(\lim\limits_{x\rightarrow1}\dfrac{g\left(x\right)}{\sqrt[]{x}-1}\)

Vì đúng như đề của bạn thì \(\lim\limits_{x\rightarrow1}\dfrac{1}{\left(\sqrt[]{x}-1\right)g\left(x\right)}=\dfrac{1}{0}=\infty\), cả \(g\left(x\right)\) lẫn \(\sqrt{x}-1\) đều tiến tới 0 khi x dần tới 1

dung doan
Xem chi tiết
Hoàng Tử Hà
9 tháng 2 2021 lúc 18:10

1/ \(\lim\limits_{x\rightarrow0^-}\left(\dfrac{x-2}{x^3}\right)=\lim\limits_{x\rightarrow0^-}\dfrac{2-x}{-x^3}=\dfrac{2}{0}=+\infty\)

2/ \(\lim\limits_{x\rightarrow1^+}\dfrac{\left(x^3-x^2\right)^{\dfrac{1}{2}}}{\left(x-1\right)^{\dfrac{1}{2}}+1-x}=\lim\limits_{x\rightarrow1^+}\dfrac{\dfrac{1}{2}\left(x^3-x^2\right)^{-\dfrac{1}{2}}.\left(3x^2-2x\right)}{\dfrac{1}{2}\left(x-1\right)^{-\dfrac{1}{2}}-1}=0\)

3/ \(\lim\limits_{x\rightarrow1^+}\dfrac{1-\left(x^2+x+1\right)}{x^3-1}=\dfrac{1-3}{0}=-\infty\)

4/ \(\lim\limits_{x\rightarrow-\infty}\left(-\infty-\sqrt[3]{1+\infty}\right)=-\left(\infty+\infty\right)=-\infty?\) Cái này ko chắc :v

Trần Phương Thảo
Xem chi tiết
Nguyễn Việt Lâm
15 tháng 3 2020 lúc 22:44

\(a=\lim\limits_{x\rightarrow-\infty}\left(\frac{-x^2}{\sqrt[3]{\left(x^3-x^2\right)^2}+x\sqrt[3]{x^3-x^2}+x^2}\right)=\lim\limits_{x\rightarrow-\infty}\left(\frac{-1}{\sqrt[3]{\left(1-\frac{1}{x}\right)^3}+\sqrt[3]{1-\frac{1}{x}}+1}\right)=-\frac{1}{3}\)

\(b=\lim\limits_{x\rightarrow+\infty}\frac{5x^2-8x}{\sqrt[3]{\left(x^3+5x^2\right)^2}+\sqrt[3]{\left(x^3+5x^2\right)\left(x^3+8x\right)}+\sqrt[3]{\left(x^3+8x\right)^2}}\)

\(=\lim\limits_{x\rightarrow+\infty}\frac{5-\frac{8}{x}}{\sqrt[3]{\left(1+\frac{5}{x}\right)^2}+\sqrt[3]{\left(1+\frac{5}{x}\right)\left(1+\frac{8}{x^2}\right)}+\sqrt[3]{\left(1+\frac{8}{x^2}\right)^2}}=\frac{5}{3}\)

\(c=\lim\limits_{x\rightarrow+\infty}\frac{1}{\sqrt[3]{\left(x^3+1\right)^2}+x\sqrt[3]{x^3+1}+x^2}=\frac{1}{+\infty}=0\)

Bài 2:

\(a=\lim\limits_{x\rightarrow1^-}\left(\frac{1-x}{\left(x-1\right)\left(x+1\right)}\right)=\lim\limits_{x\rightarrow1^-}\frac{-1}{x+1}=-\frac{1}{2}\)

\(b=\lim\limits_{x\rightarrow1^+}\left(\frac{x^2+x+1-3}{\left(1-x\right)\left(x^2+x+1\right)}\right)=\lim\limits_{x\rightarrow1^+}\frac{\left(x-1\right)\left(x+2\right)}{\left(1-x\right)\left(x^2+x+1\right)}=\lim\limits_{x\rightarrow1^+}\frac{-x-2}{x^2+x+1}=-1\)

\(c=\lim\limits_{x\rightarrow2^+}\left(\frac{1}{\left(x-1\right)\left(x-2\right)}-\frac{1}{\left(x-2\right)\left(x-3\right)}\right)=\lim\limits_{x\rightarrow2^+}\frac{-2}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}\)

Do \(x\rightarrow2^+\Rightarrow x>2\Rightarrow x-2>0\Rightarrow\left(x-1\right)\left(x-2\right)\left(x-3\right)\rightarrow0^-\)

\(\Rightarrow\lim\limits_{x\rightarrow2^+}\frac{-2}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}=+\infty\)

Khách vãng lai đã xóa
Ngọc Ánh Nguyễn Thị
Xem chi tiết
Akai Haruma
12 tháng 3 2020 lúc 0:06

Bài 2:

\(\lim\limits_{x\to 2}\frac{x-\sqrt{x+2}}{\sqrt{4x+1}-3}=\lim\limits_{x\to 2}\frac{x^2-x-2}{(x+\sqrt{x+2}).\frac{4x+1-9}{\sqrt{4x+1}+3}}=\lim\limits_{x\to 2}\frac{(x-2)(x+1)(\sqrt{4x+1}+3)}{(x+\sqrt{x+2}).4(x-2)}=\lim\limits_{x\to 2}\frac{(x+1)(\sqrt{4x+1}+3)}{4(x+\sqrt{x+2})}=\frac{9}{8}\)

Bài 3:

\(\lim\limits_{x\to 0-}\frac{1-\sqrt[3]{x-1}}{x}=-\infty \)

\(\lim\limits_{x\to 0+}\frac{1-\sqrt[3]{x-1}}{x}=+\infty \)

Bài 4:

\(\lim\limits_{x\to -\infty}\frac{x^2-5x+1}{x^2-2}=\lim\limits_{x\to -\infty}\frac{1-\frac{5}{x}+\frac{1}{x^2}}{1-\frac{2}{x^2}}=1\)

Bài 5:

\(\lim\limits_{x\to +\infty}\frac{2x^2-4}{x^3+3x^2-9}=\lim\limits_{x\to +\infty}\frac{\frac{2}{x}-\frac{4}{x^3}}{1+\frac{3}{x}-\frac{9}{x^3}}=0\)

Khách vãng lai đã xóa
Akai Haruma
12 tháng 3 2020 lúc 0:21

Bài 6:

\(\lim\limits_{x\to 2- }\frac{2x-1}{x-2}=\lim\limits_{x\to 2-}\frac{2(x-2)+3}{x-2}=\lim\limits_{x\to 2-}\left(2+\frac{3}{x-2}\right)=-\infty \)

Bài 7:

\(\lim\limits _{x\to 3+ }\frac{8+x-x^2}{x-3}=\lim\limits _{x\to 3+}\frac{1}{x-3}.\lim\limits _{x\to 3+}(8+x-x^2)=2(+\infty)=+\infty \)

Bài 8:

\(\lim\limits _{x\to -\infty}(8+4x-x^3)=\lim\limits _{x\to -\infty}(-x^3)=+\infty \)

Bài 9:

\(\lim\limits _{x\to -1}\frac{\sqrt[3]{x}+1}{\sqrt{x^2+3}-2}=\lim\limits _{x\to -1}\frac{x+1}{\sqrt[3]{x^2}-\sqrt[3]{x}+1}.\frac{\sqrt{x^2+3}+2}{x^2+3-4}=\lim\limits _{x\to -1}\frac{x+1}{\sqrt[3]{x^2}-\sqrt[3]{x}+1}.\frac{\sqrt{x^2+3}+2}{(x-1)(x+1)}\)

\(\lim\limits _{x\to -1}\frac{\sqrt{x^2+3}+2}{(\sqrt[3]{x^2}-\sqrt[3]{x}+1)(x-1)}=\frac{-2}{3}\)

Khách vãng lai đã xóa
Akai Haruma
12 tháng 3 2020 lúc 0:29

Bài 1:

\(\lim\limits_{x\to1+}\frac{2x^2-3x+1}{x^3-x^2-x+1}=\lim\limits_{x\to1+}\frac{\left(x-1\right)\left(2x-1\right)}{\left(x+1\right)\left(x-1\right)^2}=\lim\limits_{x\to1+}\frac{2x-1}{x^2-1}\)

\(\lim\limits_{x\to 1+}\frac{1}{x^2-1}.\lim\limits_{x\to 1+}(2x-1)=1.(+\infty)=+\infty \)

Tương tự \(\lim\limits_{x\to 1-} \frac{2x^2-3x+1}{x^3-x^2-x+1}=-\infty \)

Khách vãng lai đã xóa
B.Trâm
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 2 2021 lúc 23:22

Chúng ta tính giới hạn sau:

\(\lim\limits_{x\rightarrow1}\dfrac{1-\sqrt[n]{x}}{1-x}\)

Cách đơn giản nhất là sử dụng L'Hopital:

\(\lim\limits_{x\rightarrow1}\dfrac{1-x^{\dfrac{1}{n}}}{1-x}=\lim\limits_{x\rightarrow1}\dfrac{-\dfrac{1}{n}x^{\dfrac{1}{n}-1}}{-1}=\dfrac{1}{n}\)

Phức tạp hơn thì tách mẫu theo hằng đẳng thức

\(=\lim\limits_{x\rightarrow1}\dfrac{1-\sqrt[x]{n}}{\left(1-\sqrt[n]{x}\right)\left(1+\sqrt[n]{x}+\sqrt[n]{x^2}+...+\sqrt[n]{x^{n-1}}\right)}=\lim\limits_{x\rightarrow1}\dfrac{1}{1+\sqrt[n]{x}+\sqrt[n]{x^2}+...+\sqrt[n]{x^{n-1}}}=\dfrac{1}{n}\)

Tóm lại ta có:

\(\lim\limits_{x\rightarrow1}\dfrac{1-\sqrt[n]{x}}{1-x}=\dfrac{1}{n}\)

Do đó:

\(I_1=\lim\limits_{x\rightarrow1}\left(\dfrac{1-\sqrt[2]{x}}{1-x}\right)\left(\dfrac{1-\sqrt[3]{x}}{1-x}\right)...\left(\dfrac{1-\sqrt[n]{x}}{1-x}\right)=\dfrac{1}{2}.\dfrac{1}{3}...\dfrac{1}{n}=\dfrac{1}{n!}\)

Câu 2 cũng vậy: L'Hopital hoặc tách hằng đẳng thức trâu bò (thôi L'Hopital đi cho đỡ sợ)

\(I_2=\lim\limits_{x\rightarrow0}\dfrac{\left(\sqrt{1+x^2}+x\right)^n-\left(\sqrt{1+x^2}-x\right)^n}{x}\)

\(=\lim\limits_{x\rightarrow0}\dfrac{n\left(\sqrt{1+x^2}+x\right)^{n-1}\left(\dfrac{x}{\sqrt{1+x^2}}+1\right)-n\left(\sqrt{1+x^2}-x\right)^{n-1}\left(\dfrac{x}{\sqrt{1+x^2}}-1\right)}{1}\)

\(=\dfrac{n.1-n\left(-1\right)}{1}=2n\)

Tô Cường
Xem chi tiết
Phan Việt Quang
5 tháng 3 2019 lúc 15:11

Nếu m,n là số tự nhiên :v

\(x^n-1=\left(x-1\right)\left(x^{n-1}+x^{n-2}+...+x+1\right)\)\(x^m-1=\left(x-1\right)\left(x^{m-1}+x^{m-2}+...+x+1\right)\)

\(\lim\limits_{x\rightarrow1}\left(\frac{x^m-1}{x^n-1}\right)=\lim\limits_{x\rightarrow1}\frac{\left(x-1\right)\left(x^{m-1}+...+x+1\right)}{\left(x-1\right)\left(x^{n-1}+...+x+1\right)}\)

\(=\frac{x^{m-1}+...+x+1}{x^{n-1}+....+x+1}=\frac{m}{n}\)

dung doan
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 1 2021 lúc 18:53

\(a=\lim\limits_{x\rightarrow1}\dfrac{\left(x-1\right)\left(x^2-2x-2\right)}{\left(x-1\right)\left(x-3\right)}=\lim\limits_{x\rightarrow1}\dfrac{x^2-2x-2}{x-3}=\dfrac{3}{2}\)

Câu b bạn coi lại đề, là \(x\rightarrow-1^-\) hay \(x\rightarrow1^-\) (đúng như đề thì ko phải dạng vô định, cứ thay số rồi bấm máy)

\(c=\lim\limits_{x\rightarrow3}\dfrac{\left(x-3\right)}{\left(x-3\right)\left(x-1\right)\left(\sqrt[3]{\left(x+5\right)^2}+2\sqrt[3]{x+5}+4\right)}\)

 \(=\lim\limits_{x\rightarrow3}\dfrac{1}{\left(x-1\right)\left(\sqrt[3]{\left(x+5\right)^2}+2\sqrt[3]{x+5}+4\right)}=\dfrac{1}{2.\left(4+4+4\right)}=...\)

Hoàng Tử Hà
27 tháng 1 2021 lúc 18:54

a/ \(=\lim\limits_{x\rightarrow1}\dfrac{\left(x-1\right)\left(x-1+\sqrt{3}\right)\left(x-1-\sqrt{3}\right)}{\left(x-1\right)\left(x-3\right)}=\lim\limits_{x\rightarrow1}\dfrac{\left(x-1+\sqrt{3}\right)\left(x-1-\sqrt{3}\right)}{x-3}=....\)

Từ 2 câu kia lát tui làm, ăn cơm đã :D

Julian Edward
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 1 2021 lúc 20:00

\(\lim\limits_{x\rightarrow1}\dfrac{f\left(x\right)-16}{x-1}\) hữu hạn nên \(f\left(x\right)-16=0\) có nghiệm \(x=1\)

\(\Rightarrow f\left(1\right)=16\)

\(\lim\limits_{x\rightarrow1}\dfrac{f\left(x\right)-16}{x-1}.\dfrac{1}{\sqrt{2f\left(x\right)+4}+6}=24.\dfrac{1}{\sqrt{2.16+4}+6}=2\)