Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Ngọc Mai
Xem chi tiết
Nguyễn Thị Thu Hằng
Xem chi tiết
títtt
Xem chi tiết

a: \(\lim\limits_{x\rightarrow+\infty}\dfrac{\left(2m+3\right)x-5}{x+1}\)

\(=\lim\limits_{x\rightarrow+\infty}\dfrac{2m+3-\dfrac{5}{x}}{1+\dfrac{1}{x}}=2m+3\)

\(\lim\limits_{x\rightarrow-\infty}\dfrac{\left(2m+3\right)x-5}{x+1}=\lim\limits_{x\rightarrow-\infty}\dfrac{2m+3-\dfrac{5}{x}}{1+\dfrac{1}{x}}=2m+3\)

=>Đường thẳng y=2m+3 là đường tiệm  cận ngang duy nhất của đồ thị hàm số \(y=\dfrac{\left(2m+3\right)x-5}{x+1}\)

Để đường thẳng y=2m+3 đi qua A(-1;3) thì 2m+3=3

=>2m=0

=>m=0

b: \(\lim\limits_{x\rightarrow+\infty}\dfrac{\left(m^2-3m\right)x^2-1}{x^2+1}\)

\(=\lim\limits_{x\rightarrow+\infty}\dfrac{m^2-3m-\dfrac{1}{x^2}}{1+\dfrac{1}{x^2}}=m^2-3m\)

\(\lim\limits_{x\rightarrow-\infty}\dfrac{\left(m^2-3m\right)x^2-1}{x^2+1}=\lim\limits_{x\rightarrow-\infty}\dfrac{m^2-3m-\dfrac{1}{x^2}}{1+\dfrac{1}{x^2}}=m^2-3m\)

=>Đường thẳng \(y=m^2-3m\) là tiệm cận ngang của đồ thị hàm số \(y=\dfrac{\left(m^2-3m\right)x^2-1}{x^2+1}\)

=>\(m^2-3m=-2\)

=>\(m^2-3m+2=0\)

=>(m-1)(m-2)=0

=>m=1 hoặc m=2

Khánh
13 tháng 7 lúc 9:48

Đúng 

Thảo
Xem chi tiết
Yeutoanhoc
17 tháng 5 2021 lúc 9:24

`B=(x-x/(x+1))-(1-x/(x+1))`

`đkxđ:x ne +-1`

`=((x^2+x-x)/(x+1))-(x+1-x)/(x+1)`

`=x^2/(x+1)-1/(x+1)`

`=(x^2-1)/(x+1)`

`=((x-1)(x+1))/(x+1)`

`=x-1`

`2)(x-1)^2-25`

`=(x-1)^2-5^2`

`=(x-1-5)(x-1+5)`

`=(x-6)(x+4)`

Nguyễn Lê Phước Thịnh
17 tháng 5 2021 lúc 10:51

Bài 1: 

Ta có: \(B=\left(x-\dfrac{x}{x+1}\right)-\left(1-\dfrac{x}{x+1}\right)\)

\(=\left(\dfrac{x\left(x+1\right)-x}{x+1}\right)-\left(\dfrac{x+1-x}{x+1}\right)\)

\(=\dfrac{x^2+x-x-\left(x+1-x\right)}{x+1}\)

\(=\dfrac{x^2-1}{x+1}=x-1\)

Nguyễn Lê Phước Thịnh
17 tháng 5 2021 lúc 10:51

Bài 2: 

Ta có: \(\left(x-1\right)^2-25\)

\(=\left(x-1-5\right)\left(x-1+5\right)\)

\(=\left(x-6\right)\left(x+4\right)\)

Vũ Sông Hương
Xem chi tiết
Hồng Quang
9 tháng 7 2021 lúc 22:15

Chứng minh công thức tổng quát phương trình đi qua 2 điểm cực trị:

giả sử hàm bậc 3: \(y=ax^3+bxx^2+cx+d\left(a\ne0\right)\) có 2 điểm cực trị x1;x2

Ta đi tìm số dư 1 cách tổng quát: 

Ta có: \(y'=3ax^2+2bx+c-và-y''=6ax+b\) 

Xét phép chia giữa y' và y'' ta có: \(y=y'\left(\dfrac{1}{3}x+\dfrac{b}{9a}\right)+g\left(x\right)\left(1\right)\) là phường trình đi qua 2 điểm cực trị của đồ thị hàm số bậc 3

từ (1) Ta có: \(y=y'\dfrac{3ax+b}{9a}+g\left(x\right)-hay-y=y'\dfrac{6ax+2b}{18a}g\left(x\right)\) 

Từ đây dễ suy ra: \(g\left(x\right)=y-\dfrac{y'.y''}{18a}\left(công-thức-tổng-quát\right)\) ( dĩ nhiên bạn chỉ cần nhớ cái này ) 

áp dụng vào bài toán ta có: 

\(2x^3+3\left(m-1\right)x^2+6m\left(1-2m\right)x-\left(6x^2+6\left(m-1\right)x+6m\left(1-2m\right)\right).\dfrac{12x+6\left(m-1\right)}{18.2}\)

Gán:  \(\left\{{}\begin{matrix}x=i\\m=10\end{matrix}\right.\) => 1710-841i

\(\Rightarrow y=4m\left(-2m-1\right)x+17m^2+m\) bài toán quay trở về bài toán đơn giản bạn giải nốt là oke

 

 

 

nguyễn hoàng tiến
Xem chi tiết
Đinh Doãn Nam
Xem chi tiết
Nguyễn Việt Lâm
4 tháng 5 2019 lúc 21:03

Bài 1:

a/ \(\left\{{}\begin{matrix}4=-a+b\\-3=2a+b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-\frac{7}{3}\\b=\frac{5}{3}\end{matrix}\right.\)

b/ Do d song song với \(y=2x+3\Rightarrow\left\{{}\begin{matrix}a=2\\b\ne3\end{matrix}\right.\)

\(3=-5.2+b\Rightarrow b=13\)

c/ Do d vuông góc \(y=-\frac{2}{3}x-5\Rightarrow-\frac{2}{3}.a=-1\Rightarrow a=\frac{3}{2}\)

\(-1=\frac{3}{2}.4+b\Rightarrow b=-7\)

d/ \(b=2\Rightarrow y=ax+2\)

d cắt \(y=x-1\) tại điểm có hoành độ 1 \(\Rightarrow d\) đi qua điểm A(1;0)

\(\Rightarrow0=a+2\Rightarrow a=-2\)

e/ Thay 2 hoành độ vào pt (P) ta được \(\left\{{}\begin{matrix}A\left(2;-4\right)\\B\left(1;-1\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}-4=2a+b\\-1=a+b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-3\\b=2\end{matrix}\right.\)

f/ \(a=2\)

Thay tung độ y=1 vào pt đường thẳng được \(A\left(2;1\right)\)

\(\Rightarrow1=2.2+b\Rightarrow b=-3\)

Nguyễn Việt Lâm
4 tháng 5 2019 lúc 21:08

Bài 2:

\(y=mx-2m-1\Rightarrow\left(x-2\right).m-\left(y+1\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}x-2=0\\y+1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\) \(\Rightarrow A\left(2;-1\right)\)

\(y=mx+m-1\Rightarrow\left(x+1\right).m-\left(y+1\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}x+1=0\\y+1=0\end{matrix}\right.\) \(\Rightarrow B\left(-1;-1\right)\)

\(y=\left(m+1\right)x+2m-3\Rightarrow y=\left(m+1\right)x+2\left(m+1\right)-5\)

\(\Rightarrow\left(m+1\right)\left(x+2\right)-\left(y+5\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}x+2=0\\y+5=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-2\\y=-5\end{matrix}\right.\)

Nguyễn Việt Lâm
4 tháng 5 2019 lúc 21:12

Bài 2:

b/ \(y=\left(m-1\right)x-2m+3\Rightarrow y=\left(m-1\right)x-2\left(m-1\right)+1\)

\(\Rightarrow\left(m-1\right)\left(x-2\right)-\left(y-1\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}x-2=0\\y-1=0\end{matrix}\right.\) \(\Rightarrow A\left(2;1\right)\)

Vậy d luôn đi qua điểm cố định A(2;1)

Mặt khác thay tọa độ A vào pt (P) ta được:

\(1=\frac{1}{4}.2^2\) \(\Rightarrow1=1\) (đúng)

Vậy A thuộc (P)

c/ \(y=2mx+1-m\Rightarrow m\left(2x-1\right)-\left(y-1\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}2x-1=0\\y-1=0\end{matrix}\right.\) \(\Rightarrow A\left(\frac{1}{2};1\right)\)

Thay tọa độ A vào pt (P) ta được:

\(1=4.\left(\frac{1}{2}\right)^2\Rightarrow1=1\) đúng

Vậy A thuộc (P) hay d luôn đi qua điểm \(A\left(\frac{1}{2};1\right)\) cố định thuộc (P)

Vũ Anh Quân
Xem chi tiết
Vũ Anh Quân
Xem chi tiết
Akai Haruma
27 tháng 11 2017 lúc 1:00

Lời giải:

Xét (d1)

\(y=4mx-(m+5)\)

\(\Leftrightarrow m(4x-1)-(5+y)=0\)

Để pt đúng với mọi $m$ thì:

\(\left\{\begin{matrix} 4x-1=0\\ 5+y=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=\frac{1}{4}\\ y=-5\end{matrix}\right.\)

Vậy điểm A cố định khi m thay đổi là \(\left(\frac{1}{4}; -5\right)\)

Xét (d2)

\(y=(3m^2+1)x+(m^2-9)\)

\(\Leftrightarrow m^2(3x+1)+(x-y-9)=0\)

Để pt đúng với mọi m thì \(\left\{\begin{matrix} 3x+1=0\\ x-y-9=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=-\frac{1}{3}\\ y=\frac{-28}{3}\end{matrix}\right.\)

Vậy điểm B cố định khi m thay đổi là \(\left(\frac{-1}{3}; \frac{-28}{3}\right)\)

Như vậy ta có đpcm.

\(BA=\sqrt{(-\frac{1}{3}-\frac{1}{4})^2+(\frac{-28}{3}+5)^2}=\frac{\sqrt{2753}}{12}\)