Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Ngọc Minh
Xem chi tiết
Nguyễn Tất Đạt
26 tháng 5 2021 lúc 21:54

A B O M I C D E F

MO là trung trực của AI => MO vuông góc AI, có BI vuông góc AI => MO || BI

Ta thấy MA.MI là hai tiếp tuyến kẻ từ M đến (O), MCD là cát tuyến của (O), do đó \(\left(ICAD\right)=-1\)

Vì B nằm trên (O) nên \(B\left(ICAD\right)=-1\), mà MO || BI, MO cắt BC,BA,BD tại E,O,F nên O là trung điểm EF.

Khách vãng lai đã xóa
EXO_CHANYEOL
Xem chi tiết
EXO_CHANYEOL
19 tháng 3 2016 lúc 19:20

thầy cho mik gợi ý nhg ko bt làm

từ M kẻ tiếp tuyến MI

kẻ tt Bt

nối AI CI EI 

bn nào bt lm hộ nha

Nguyễn Hoàng Linh
19 tháng 3 2016 lúc 19:43

.Dường thẳng BC cắt OM tại E và F, sao BC cắt OM tại 2 điểm đc hả bạn

Trung phan kien
Xem chi tiết
Nhật Minh Vũ
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 7 2023 lúc 20:11

a: góc ADB=1/2*sđ cung AB=90 độ

góc ADM=góc AHM=90 độ

=>ADHM nội tiếp

b: Xét ΔCAD và ΔCEA có

góc CAD=góc CEA

góc ACD chung

=>ΔCAD đồng dạng với ΔCEA

=>CA/CE=CD/CA

=>CA^2=CE*CD

ΔCAO vuông tại A có AH là đường cao

nên CH*CO=CA^2

=>CD*CE=CH*CO

Wolf 2k6 has been cursed
Xem chi tiết
An Thy
25 tháng 6 2021 lúc 8:44

bạn tham khảo ở đây nha,mình từng giải rồi

https://hoc24.vn/cau-hoi/cho-duong-tron-o-duong-kinh-ab-tren-tiep-tuyen-tai-a-cua-duong-trong-o-lay-diem-c-ve-tuyep-tuyen-cn-va-cat-tuyen-cde-tia-cd-nam-giua-2-tai-ca-co-de-thuoc-duong-tron-o-d-nam-giua-c-va-e.1081799079177

Wolf 2k6 has been cursed
Xem chi tiết
An Thy
21 tháng 6 2021 lúc 17:08

a) Vì CA là tiếp tuyến \(\Rightarrow\angle CAD=\angle CEA\) (góc tạo bởi tiếp tuyến và dây cung bằng góc nội tiếp chắn cung đó)

Xét \(\Delta CAD\) và \(\Delta CEA:\) Ta có: \(\left\{{}\begin{matrix}\angle CAD=\angle CEA\\\angle ACEchung\end{matrix}\right.\)

\(\Rightarrow\Delta CAD\sim\Delta CEA\left(g-g\right)\Rightarrow\dfrac{CA}{CE}=\dfrac{CD}{CA}\Rightarrow CA^2=CD.CE\)

mà \(CH.CO=CA^2\) (hệ thức lượng) \(\Rightarrow CD.CE=CH.CO\)

c) Vì AB là đường kính \(\Rightarrow\angle ADB=90\)

Vì CA,CN là tiếp tuyến \(\Rightarrow\Delta CAN\) cân tại C có CO là phân giác \(\angle ACN\)

\(\Rightarrow CO\bot AN\Rightarrow\angle AHM=90\)

\(\Rightarrow\angle AHM=\angle ADM=90\Rightarrow ADHM\) nội tiếp

Ta có: \(\angle EAF=\angle DAE-\angle DAF=180-\angle DBE-\angle CHD\) (ADHM,ADBE nội tiếp)

Ta có: \(CD.CE=CH.CO\Rightarrow\dfrac{CD}{CO}=\dfrac{CH}{CE}\)

Xét \(\Delta CHD\) và \(\Delta CEO:\) Ta có: \(\left\{{}\begin{matrix}\dfrac{CD}{CO}=\dfrac{CH}{CE}\\\angle OCEchung\end{matrix}\right.\)

\(\Rightarrow\Delta CHD\sim\Delta CEO\left(c-g-c\right)\Rightarrow\angle CHD=\angle CEO\Rightarrow DHOE\) nội tiếp 

\(\Rightarrow\angle CHD=\angle CEO=\angle DEO=\dfrac{180-\angle DOE}{2}=90-\dfrac{1}{2}\angle DOE\)

\(=90-\angle DBE\Rightarrow\angle EAF=180-\angle DBE-\left(90-\angle DBE\right)=90\)

\(\Rightarrow EF\) là đường kính \(\Rightarrow E,O,F\) thẳng hàng

undefined

  

khánh hiền
Xem chi tiết
Mostost Romas
Xem chi tiết
hello7156
Xem chi tiết