Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.
a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếp
b) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.AN
Câu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M là trung điểm của dây cung AC. Nối BM cắt cung AC tại E; AE và BC kéo dài cắt nhau tại D.
a) C/m: MOCD là hình bình hành
b) Vẽ đường tròn tâm E bán kính EA cắt (O) tại điểm thứ 2 là N. Kẻ EF vuông góc với AC, EF cắt AN tại I, cắt (O) tại điểm thứ 2 là K; EB cắt AN tại H. C/m: BHIK nội tiếp.
Câu 3: Cho (O;R). Từ điểm S nằm ngoài đường tròn sao cho SO=2R. Vẽ tiếp tuyến SA,SB (A,B là tiếp tuyến). Vẽ cát tuyến SDE (D nằm giữa S và E), điểm O nằm trong góc ESB. Từ O kẻ đường vuông góc với OA cắt SB tại M. Gọi I là giao điểm của OS và (O).
a) C/m: MI là tiếp tuyến của (O)
b) Qua D kẻ đường vuông góc với OB cắt AB tại H và EB tại K. C/m: H là trung điểm của DK.
Cho đường tròn (O) và điểm M nằm ngoài (O) . Từ M vẽ 2 tiếp tuyến MA, MB của (O). H là giao điểm của MO và AB. Qua M vẽ cát tuyến MCD của (O) sao cho MD cắt đoạn HB (MC<MD). qua C vẽ đường thẳng song song với BD cắt MB tại T và cắt AB tại F. Chứng minh C là trung điểm TF
Cho đường tròn tâm O điểm m cố định ngoài ô vẽ hai tiếp tuyến MA MB với đường tròn tâm O trên cung nhỏ AB lấy điểm M.kẻ tiếp tuyến MA và MB. trên cung nhoe AB lấy N kẻ tt tại N cắt MA và MB tại E và F Gọi K là giao điểm của AE và góc với AB Cho góc AOB bằng 120 độ Tính tỉ số EF/ IK
Cho đường tròn (O; R). Điểm M ở bên ngoài đường tròn sao cho OM= 2R. Kẻ hai tiếp tuyến MA, MB tời đường tròn (A;B là các tiếp điểm). Nối OM cắt AB tại H. Hạ HD vuông góc MA tại D. Điểm C thuộc cung nhỏ AB. Tiếp tuyến tại C của đường tròn (O;R) cắt MA, MB lần lượt tại E và F. Đường tròn đường kính BM cắt BD tại I. Gọi K là trung điểm của OA. Chứng minh ba điểm M, I, K thẳng hàng
Từ điểm M nằm ngoài (O) vẽ các tiếp tuyến MA,MB (A, B là các tiếp điểm).Lấy điểm C thuộc cung AB lớn, kẻ AK vuông góc BC tại K. Gọi I là trung điểm của AK, CI cắt (O) tại E khác C. Tia ME cắt (O) tại F
a) CM: OM là tiếp tuyến của đường tròn ngoại tiếp tam giác MEA
b). CM: khi C di chuyển trên cung AB lớn thì EF có độ dài không đổi
Giải giúp mình nhe cả nhà:
Cho đường tròn (O;R) và điểm S cố định nằm ngoài đường tròn (O). Vẽ các tiếp tuyến SA, SB (A,B là tiếp điểm), vẽ cát tuyến SCD không qua O và nằm trên nửa mặt phẳng bờ là đường thẳng SO có chứa điểm A (C nằm giữa S và D). Gọi I là giao điểm của AB và SO, tứ giác SAOB nội tiếp đường tròn tâm T. Lấy điểm N trên cung nhỏ CB của (O). Tiếp tuyến tại N của (O) cắt SA, SB lần lượt tại E và F. Gọi H là giao điểm của SD và AB, vẽ OM vuông góc CD tại M. Trên tia đối của tia IC lấy điểm K sao cho I là trung điểm của CK. Tia SO cắt KD tại Q.
Chứng minh rằng: CK // HQ
Cám ơn cả nhà.
Từ điểm M nằm ngoài đường tròn O . Vẽ tiếp tuyến MA,MB với đường tròn ( A,B là các tiếp điểm ) và cát tuyến MCD không đi qua O ( C nằm giẵ M và D ) với đường tròn O
a) C/m tứ giác MAOB nội tiếp
b)C/m MA2 =MC.MD
c) Đường thẳng MO cắt AB tại H và cắt O tại I và K ( I nằm giữa M và K ) . C/m CK là phân giác của DCH
Cho (O;R) và điểm A nằm ngoài đường tròn với OA > 2R. Từ A và B vẽ 2 tiếp tuyến AB, AC của đường tròn O (B,C là các tiếp điểm). VẼ dây BE của đường tròn O song song với AC; AE cắt (O) tại D khác E; BD cắt AC tại S. Gọi M là trung điểm của DE. Hai đường thẳng DE và BC cắt nhau tại V; đường thẳng SV cắt BE tại H. Chứng minh 3 điểm H,O,C thẳng hàng.
Cho đường tròn tâm O , đường kính AB . Trên đường tròn lấy 1 điểm C sao cho AC>BC.Các tiếp tuyến tại A và tại C của (O) cắt nhau tại D , BD cắt (O) tại E . Vẽ CH vuông góc với AB tại H, I là giao điểm của DH và AE . Tiếp tuyến tại E của (O) cắt AD tại M . Chứng minh : 3 điểm M,I,C thẳng hàng.