Cho tam giác ABC có 3 đường trung tuyến AM, CD, BN cắt nhau tại G. Hay tính các tỷ số AG phần AM; Gd phần CG; GN bằng BN
Giúp hộ Mình 1 tý nha mn, chiều mình phải nộp bài rồi ạ
Cảm mn nhiều :">
Cho tam giác ABC câb tại A có AB=5cm, BC=8cm. Hai đường trung tuyến AM,BN của tam giác ABC cắt nhau tại G. Tính AG
Cho tam giác ABC có ba đường trung tuyến AM, BN, CP cắt nhau tại G. Biết AG = BG = CG. Chứng minh tam giác ABC đều
Cho tam giác ABC vuông tại A có AB=9cm , AC=12cm
a.Tính BC
b.Đường trung tuyến AM và BN cắt nhau tại G tính AG.
a. Áp dụng đinh lí Py - ta - go vào Δ ABC vuông tại A:
BC2 = AC2 + AB2
BC2 = 122 + 92 = 144 + 81 = 225
=> BC = 15 cm (BC > 0)
câu b mik chưa biết làm. Sorry bạn :(
Cho tam giác ABC. Hai đường trung tuyến AM và BN cắt nhau tại G.
Tìm các số a, b biết: \(\overrightarrow {AG} = a.\overrightarrow {AM} ;\overrightarrow {GN} = b.\overrightarrow {GB} \)
Ta có: \(\overrightarrow {AG} ,\overrightarrow {AM} \)là hai vecto cùng hướng và \(\left| {\overrightarrow {AG} } \right| = \frac{2}{3}\left| {\overrightarrow {AM} } \right|\)
Suy ra \(\overrightarrow {AG} = \frac{2}{3}\overrightarrow {AM} .\) Vậy \(a = \frac{2}{3}.\)
Ta có: \(\overrightarrow {GN} ,\overrightarrow {GB} \)là hai vecto ngược hướng và \[\left| {\overrightarrow {GN} } \right| = \frac{1}{3}BN = \frac{1}{2}.\left( {\frac{2}{3}BN} \right) = \frac{1}{2}\left| {\overrightarrow {GB} } \right|\]
Suy ra \(\overrightarrow {GN} = - \frac{1}{2}\overrightarrow {GB} .\) Vậy \(b = - \frac{1}{2}.\)
Cho tam giác ABC có ba đường trung tuyến AM, BN, CP cắt nhau tại G.
Biết AM = BN = CP. Chứng mình tam giác ABC đều.
Cho tam giác ABC có các đường trung tuyến AM, BN, CP cắt nhau tại G. Gọi K là trung điểm của GB
Chứng minh rằng các cạnh của tam giác GMK bằng 1/3 các trung tuyến tam giác ABC
Xét ΔABC có
AM,CP,BN là trung tuyến
AM cắt CP cắt BN tại G
=>G là trọng tâm
=>BG=2/3BN; CG=2/3CP; AG=2/3AM
=>BK=KG=GN=1/3BN
=>GK=1/3BN; GM=1/3AM
Xet ΔBGC có BM/BC=BK/BG
nên MK//GC và MK/GC=BM/BC=1/2
=>MK=1/2GC=1/2*2/3*CP=1/3CP
Cho tam giác ABC có các trung tuyến AM, BN, CP cắt nhau tại trọng tâm G. Trên tia AM lấy điểm D sao cho G là trung điểm của AD.CMR: Các đường trung tuyến của tam giác BGD=1/2 các cạnh của tam giác ABC.
Mk cần gấp ạ.
cho tam giác ABC vuông tại A, có AB = 3cm, AC = 4cm.
a)tính độ dài cạnh BC
b)dường trung tuyến AM và đường trung tuyến BN cắt ngay tại G. tính AG.
c) trên tia đối của tia NB ,lấy diểm D sao cho NB = ND chứng minh CD vuông góc AC.
Giúp mik với !!!
a/
\(BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5cm\) (Pitago)
b/
Ta có
\(AM=\dfrac{BC}{2}=\dfrac{5}{2}=2,5cm\) (Trong tg vuông trung tuyến thuộc cạnh huyền thì bằng nửa cạnh huyền)
\(AG=\dfrac{2}{3}AM=\dfrac{2}{3}.\dfrac{5}{2}=\dfrac{5}{3}cm\) (trong tg 3 đường trung tuyến đồng quy tại 1 điểm và điểm đó cách đỉnh 1 khoảng bằng 2/3 độ dài đường trung tuyến mà trung tuyến đó đi qua)
c/
Xét tg ABN và tg CDN có
AN=CN (gt); BN=DN (gt)
\(\widehat{ANB}=\widehat{CND}\) (Góc đối đỉnh)
=> tg ABN=tg CDN (c.g.c)=> \(\widehat{BAN}=\widehat{DCN}=90^o\Rightarrow CD\perp AC\)