xét dấu hàm số bậc hai sau \(x^2+\left(\sqrt{5}-1\right)x-\sqrt{5}\)
Biến đổi các hàm số sau thành hàm số bậc nhất, nếu đã là hàm số bậc nhất hãy xét sự đồng biến, nghịch biến trên \(R\)
a. \(y=5x-\left(2-x\right)m\)
b. \(y=3\left(x-1\right)-\sqrt{5}x\)
c. \(y=\left(2-\sqrt{3}\right)x-\sqrt{2}x+1\)
d. \(y=\left(5-4m+m^2\right)x+2\)
Xét sự đồng biến và nghịch biến của các hàm số :
a. \(y=\left(3\sqrt{2}-\sqrt{19}\right)x+5\)
b. \(y=3\left(x-1\right)-\sqrt{5}x\)
c. \(y=\left(2-\sqrt{3}\right)x-\sqrt{2}x+1\)
d. \(y=\left(m^2-m+1\right)x-2m\)( với m là tham số, x là biến )
=> Đối với những câu chưa chuyển sang dạng hàm số bậc nhất, chuyển sang hàm số bậc nhất rồi xét sự đồng biến, nghịch biến.
Xét dấu tam thức bậc hai:
\(D\left(x\right)=\dfrac{11x+3}{-x^2+5x-4}\)
\(E\left(x\right)=\left(\left(x^2+\sqrt{3}-1\right)x-\sqrt{3}\right).\left(\left(x^2-\sqrt{7}-1\right)x+\sqrt{3}\right)\)
Biểu thức nào sau đây là tam thức bậc hai? Nếu là tam thức bậc hai, hãy xét dấu của nó tại \(x = 1\).
a) \(f\left( x \right) = 2{x^2} + x - 1\);
b) \(g\left( x \right) = - {x^4} + 2{x^2} + 1\)
c) \(h\left( x \right) = - {x^2} + \sqrt 2 .x - 3\)
a) Biểu thức \(f\left( x \right) = 2{x^2} + x - 1\) là một tam thức bậc hai
\(f\left( 1 \right) = {2.1^2} + 1 - 1 = 2 > 0\) nên \(f\left( x \right)\) dương tại \(x = 1\)
b) Biểu thức \(g\left( x \right) = - {x^4} + 2{x^2} + 1\) không phải là một tam thức bậc hai
c) Biểu thức \(h\left( x \right) = - {x^2} + \sqrt 2 .x - 3\) là một tam thức bậc hai
\(h\left( 1 \right) = - {1^2} + \sqrt 2 .1 - 3 = \sqrt 2 - 4 < 0\) nên \(h\left( x \right)\) âm tại \(x = 1\)
a) với mỗi giá trị của m thì hàm số nào sau đây là hàm số bậc nhất :
+) \(y=\sqrt{2-m}\left(x+1\right)\)
+) \(\frac{\sqrt{m-5}}{\sqrt{m+5}}x+\sqrt{2}\)
a) Ta có : \(y=\sqrt{2-m}\left(x+1\right)\)
\(=x\sqrt{2-m}+\sqrt{2-m}\)
Để \(y\) là hàm số bậc nhất \(\Leftrightarrow\sqrt{2-m}\ne0\)
\(\Leftrightarrow m\ne4\)
b) Ta có : \(y=\frac{\sqrt{m-5}}{\sqrt{m+5}}x+\sqrt{2}\)
Để \(y\) là hàm số bậc nhất \(\Leftrightarrow\frac{\sqrt{m-5}}{\sqrt{m+5}}\ne0\)
\(\Leftrightarrow\hept{\begin{cases}\frac{m-5}{m+5}\ne0\\m\ne-5\end{cases}}\) \(\Leftrightarrow m\ne\pm5\)
\(y=\left(\sqrt{x}+1\right)^2+\left(m-1\right)\left(\sqrt{x}-1\right)^2-m\left(\sqrt{x}+3\right)\)
Tìm m để hàm số sau là hàm số bậc nhất. Khi đó hàm số là đồng biến hay nghịch biến?
Trong các hàm số sau, hàm số nào là hàm số bậc nhất ? Hãy xác định các hệ số a, b và xét xem hàm số nào đồng biến ? Hàm số nào nghịch biến ?
a) \(y=3-0,5x\)
b) \(y=-1,5x\)
c) \(y=5-2x^2\)
d) \(y=\left(\sqrt{2}-1\right)x+1\)
e) \(y=\sqrt{3}\left(x-\sqrt{2}\right)\)
f) \(y+\sqrt{2}=x-\sqrt{3}\)
xét tính liên tục của hàm số sau tại \(x_0\) = 5
\(f\left(x\right)=\left\{{}\begin{matrix}\dfrac{\sqrt{2x-9}-1}{5-x}\\3\end{matrix}\right.\) khi \(x\ne5\); khi \(x=5\)
\(\lim\limits_{x\rightarrow5}f\left(x\right)=\lim\limits_{x\rightarrow5}\dfrac{\sqrt{2x-9}-1}{5-x}\)
\(=\lim\limits_{x\rightarrow5}\dfrac{2x-9-1}{\sqrt{2x-9}+1}\cdot\dfrac{1}{5-x}\)
\(=\lim\limits_{x\rightarrow5}\dfrac{2\left(x-5\right)}{-\left(x-5\right)\left(\sqrt{2x-9}+1\right)}\)
\(=\lim\limits_{x\rightarrow5}\dfrac{-2}{\sqrt{2x-9+1}}=\dfrac{-2}{\sqrt{10-9}+1}=-\dfrac{2}{2}=-1\)
f(5)=3
=>\(\lim\limits_{x\rightarrow5}f\left(x\right)< >f\left(5\right)\)
=>Hàm số bị gián đoạn tại x=5
Điểm nào sau đây thuộc đồ thị hàm số \(y=\left(\sqrt{5}-2\right)x+2\)
A. M\(\left(0;\sqrt{5}-2\right)\)
B. P\(\left(\sqrt{5}+2;3\right)\)
C. N\(\left(1;\sqrt{5}+2\right)\)
D. Q\(\left(-1;\sqrt{5}\right)\)