(4x-12)(x³+64)=0
tìm x biết: (4x-12)(x^3+64)=0
(3x-12)(x^2-4)=0
(x+3)^3:3-1=-10
(3x-1)^3-2=-66
m.n giúp mik vs tối mik phải nộp r ak
(4x-12)(x3+64)=0
=> [x3+64=0=>x=4x-12=0=>4x=12=>x=3 olm bị lỗi nên em đừng có viết cách ra 1 quãng như kia nhé !
vậy x thuộc {3;4}
(3x-12)(x2-4)=0
=>[x2-4=0=>x2=4=>x=2 hoặc x=-23x-12=0=>3x=12=>x=4
vậy x thuộc {4;2;-2}
(x+3)3:3-1=-10
(x+3)3:3=-9
(x+3)3=-9.3
=>(x+3)3=-27
=>x+3=-3
=>x=-6
(3x-1)3-2=-66
(3x-1)3=-64
(3x-1)3=-43
=>3x-1=-4
=>3x=-3
=>x=-1
\(\left(4x-12\right)\left(x^3+64\right)=0\)
\(\Leftrightarrow4x-12=0\)
\(\Leftrightarrow4x=0+12\)
\(\Leftrightarrow4x=12\)
\(\Leftrightarrow x=12\div4\)
\(\Leftrightarrow x=3\)
\(\Leftrightarrow x^3+64=0\)
\(\Leftrightarrow x^3=0=64\)
\(\Leftrightarrow x^3=\left(-64\right)\)
\(\Leftrightarrow x^3=\left(-4\right)^3\)
\(\Leftrightarrow x=\left(-4\right)\)
\(\Rightarrow x\in\left\{-4;3\right\}\)
\(\Leftrightarrow\left(3x-12\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow3x-12=0\)
\(\Leftrightarrow3x=0+12\)
\(\Leftrightarrow3x=12\)
\(\Leftrightarrow x=12\div3\)
\(x=4\)
\(\Leftrightarrow x^2-4=0\)
\(\Leftrightarrow x^2=0+4\)
\(\Leftrightarrow x^2=4\)
\(\Leftrightarrow x^2=2^2=\left(-2\right)^2\)
\(\Rightarrow x\in\left\{2;-2\right\}\)
\(\Rightarrow x\in\left\{-2;2;4\right\}\)
Các câu khác tương tự nhé !
( 12 x X -64 ) x512 + 4x 1096
bài 7
4x3 + 12 = 120
b, ( x - 4 )2 = 64
c, ( x + 1 )3 - 2 = 52
d, 136 - ( x + 5)2 = 100
e, 4x = 16
f, 7x. 3 - 147 = 0
g, 2x+3 - 15 = 17
h, 52x-4. 4 = 102
i, (32 - 4x)(7 - x) = 0
k, ( 8 - x)(10 - 2x) = 0
m, 3x + 3x+1 = 108
n, 5x+2 + 5x+1 = 750
a: \(4x^3+12=120\)
=>\(4x^3=108\)
=>\(x^3=27=3^3\)
=>x=3
b: \(\left(x-4\right)^2=64\)
=>\(\left[{}\begin{matrix}x-4=8\\x-4=-8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=12\\x=-4\end{matrix}\right.\)
c: (x+1)^3-2=5^2
=>\(\left(x+1\right)^3=25+2=27\)
=>x+1=3
=>x=2
d: 136-(x+5)^2=100
=>(x+5)^2=36
=>\(\left[{}\begin{matrix}x+5=6\\x+5=-6\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-11\end{matrix}\right.\)
e: \(4^x=16\)
=>\(4^x=4^2\)
=>x=2
f: \(7^x\cdot3-147=0\)
=>\(3\cdot7^x=147\)
=>\(7^x=49\)
=>x=2
g: \(2^{x+3}-15=17\)
=>\(2^{x+3}=32\)
=>x+3=5
=>x=2
h: \(5^{2x-4}\cdot4=10^2\)
=>\(5^{2x-4}=\dfrac{100}{4}=25\)
=>2x-4=2
=>2x=6
=>x=3
i: (32-4x)(7-x)=0
=>(4x-32)(x-7)=0
=>4(x-8)*(x-7)=0
=>(x-8)(x-7)=0
=>\(\left[{}\begin{matrix}x-8=0\\x-7=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=8\\x=7\end{matrix}\right.\)
k: (8-x)(10-2x)=0
=>(x-8)(x-5)=0
=>\(\left[{}\begin{matrix}x-8=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\x=5\end{matrix}\right.\)
m: \(3^x+3^{x+1}=108\)
=>\(3^x+3^x\cdot3=108\)
=>\(4\cdot3^x=108\)
=>\(3^x=27\)
=>x=3
n: \(5^{x+2}+5^{x+1}=750\)
=>\(5^x\cdot25+5^x\cdot5=750\)
=>\(5^x\cdot30=750\)
=>\(5^x=25\)
=>x=2
Tim x
\(\sqrt{4x^2-16x+64}+2x=12\)
ĐKXĐ: \(x\ge4\)
\(\sqrt{4x^2-16x+64}+2x=12\)
\(\Leftrightarrow\sqrt{\left(2x-8\right)^2}+2x=12\)
\(\Leftrightarrow\left|2x-8\right|+2x=12\)
Vì \(x\ge4\) \(\Rightarrow2x-8+2x=12\)
\(\Leftrightarrow4x=20\)
\(\Leftrightarrow x=5\left(TM\right)\)
Vậy x = 5
Tìm x
a, x\(^2\)-64=0
b, 4x\(^2\)-4x+1=0
c, 9-6x+x\(^2\)=0
a) \(x^2-64=0\)
\(\Leftrightarrow\left(x-8\right)\left(x+8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-8\end{matrix}\right.\)
b) \(4x^2-4x+1=0\)
\(\Leftrightarrow\left(2x-1\right)^2=0\Leftrightarrow2x-1=0\)
\(\Leftrightarrow x=\dfrac{1}{2}\)
c) \(9-6x+x^2=0\)
\(\Leftrightarrow\left(x-3\right)^2=0\)
\(\Leftrightarrow x-3=0\Leftrightarrow x=3\)
a: Ta có: \(x^2-64=0\)
\(\Leftrightarrow\left(x-8\right)\left(x+8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-8\end{matrix}\right.\)
b: Ta có: \(4x^2-4x+1=0\)
\(\Leftrightarrow\left(2x-1\right)^2=0\)
hay \(x=\dfrac{1}{2}\)
c: ta có: \(x^2-6x+9=0\)
\(\Leftrightarrow\left(x-3\right)^2=0\)
hay x=3
Tìm tâm và bán kính của các đường tròn có phương trình:
a) \({\left( {x - 2} \right)^2} + {\left( {y - 7} \right)^2} = 64\)
b) \({\left( {x + 3} \right)^2} + {\left( {y + 2} \right)^2} = 8\)
c) \({x^2} + {y^2} - 4x - 6y - 12 = 0\)
a) Phương trình đường tròn \({\left( {x - 2} \right)^2} + {\left( {y - 7} \right)^2} = 64\) có dạng \({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} = {R^2}\) nên đường tròn có tâm là \(I(2;7)\) và bán kinh \(R = \sqrt {64} = 8\)
b) Phương trình đường tròn \({\left( {x + 3} \right)^2} + {\left( {y + 2} \right)^2} = 8\) có dạng \({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} = {R^2}\) nên đường tròn có tâm là \(I( - 3; - 2)\) và bán kinh \(R = \sqrt 8 = 2\sqrt 2 \)
c) Phương trình đường tròn \({x^2} + {y^2} - 4x - 6y - 12 = 0\) có dạng \({x^2} + {y^2} - 2ax - 2by + c = 0\) nên đường tròn có tâm là \(I(2;3)\) và bán kinh \(R = \sqrt {{2^2} + {3^2} + 12} = 5\)
Giải các phương trình sau: 1)√3x²-√12=0
2)√(x-3)²=9
3)√4x²+4x+1=6
4)√(2x-1)²=3
5)√(x-3)²=3-x 6)√4x²-20x+25+2x=5
7)√1-12x+36x²=5
1.
$\sqrt{3x^2}-\sqrt{12}=0$
$\Leftrightarrow \sqrt{3x^2}=\sqrt{12}$
$\Leftrightarrow 3x^2=12$
$\Leftrightarrow x^2=4$
$\Leftrightarrow (x-2)(x+2)=0\Leftrightarrow x=\pm 2$
2.
$\sqrt{(x-3)^2}=9$
$\Leftrightarrow |x-3|=9$
$\Leftrightarrow x-3=9$ hoặc $x-3=-9$
$\Leftrightarrow x=12$ hoặc $x=-6$
3.
$\sqrt{4x^2+4x+1}=6$
$\Leftrightarrow \sqrt{(2x+1)^2}=6$
$\Leftrightarrow |2x+1|=6$
$\Leftrightarrow 2x+1=6$ hoặc $2x+1=-6$
$\Leftrightarrow x=\frac{5}{2}$ hoặc $x=\frac{-7}{2}$
tìm x biét
a, x mũ 2 - 1 phần 49 = 0
b, 64 - 1 phần 4 x mũ 2 = 0
c, 9x mũ 2 + 12x + 4 =0
d, x mũ + 4 =4x
e, x mũ 2 + 1 phần 4 = x
i, 4 - 12 phần x + 9 phần x mũ 2 = 0
a) \(x^2-\frac{1}{49}=0\)
<=> \(\left(x-\frac{1}{7}\right)\left(x+\frac{1}{7}\right)=0\)
<=> \(\orbr{\begin{cases}x-\frac{1}{7}=0\\x+\frac{1}{7}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{7}\\x=-\frac{1}{7}\end{cases}}\)
Vậy x = \(\pm\frac{1}{7}\)
b) \(64-\frac{1}{4}x^2=0\)
<=> \(\left(8-\frac{1}{2}x\right)\left(8+\frac{1}{2}x\right)=0\)
<=> \(\orbr{\begin{cases}8-\frac{1}{2}x=0\\8+\frac{1}{2}x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=16\\x=-16\end{cases}}\)
Vậy \(x=\pm16\)
c) 9x2 + 12x + 4 = 0
<=> (3x + 2)2 = 0
<=> 3x + 2 = 0
<=> x = -2/3
Vậy x = -2/3
e) \(x^2+\frac{1}{4}=x\)
<=> \(x^2-x+\frac{1}{4}=0\)
<=> \(\left(x-\frac{1}{2}\right)^2=0\)
<=> \(x=\frac{1}{2}\)
Vậy \(x=\frac{1}{2}\)
d, sửa đề : \(x^2+4=4x\Leftrightarrow x^2-4x+4=0\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x=2\)
i, \(4-\frac{12}{x}+\frac{9}{x^2}=0\)ĐK : \(x\ne0\)
Vì \(x\ne0\)Nhân 2 vế với \(x^2\)phương trình có dạng
\(4x^2-12x+9=0\Leftrightarrow\left(2x-3\right)^2=0\Leftrightarrow x=\frac{3}{2}\)
\(\sqrt{16x-64}-12\sqrt{\dfrac{x-4}{4}}+2\sqrt{4x-16}=6\)
\(\Leftrightarrow\sqrt{x-4}\left(4-12\cdot\dfrac{1}{2}+2\cdot2\right)=6\)
=>x-4=9
hay x=13