Tam giác ABC vuông tại A đường cao AH, biết AH=3cm,HB=4cm.Tính BC
Cho tam giác ABC vuông tại A đường cao AH, biết AB = 3cm; AC = 4 cm tính: a) BC,AH,HB b) số đo góc B
a) Áp dụng định lí Py - ta - go vào tam giác vuông ABC ta có:
BC = \(\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}\)
BC = 5 cm
Từ hệ thức của cạnh góc vuông và hình chiếu của nó trên cạnh huyền suy ra:
HB = \(\dfrac{AB^2}{BC}=\dfrac{3^2}{5}=1,8\) cm
Ta có: HB + HC = BC
1,8 + HC = 5
HC = 3,2 cm
Theo hệ thức liên quan đến đường cao ta có:
AH2 = HB . HC
AH2 = 1,8 . 3,2
AH2 = 5,76
⇒ AH = 2,4 cm
cho tam giác abc vuông tại a, 1 đường thẳng vuông góc với bc tại d cắt ac,ab tại e, f.
chứng minh
a)db.dc=de.df
b)AH là đướng cao của tam giác abc, biết HB = 3cm, HC = 12cm. Tính AH
cho tam giác abc vuông tại a, 1 đường thẳng vuông góc với bc tại d cắt ac,ab tại e, f.
chứng minh
a)db.dc=de.df
b)AH là đướng cao của tam giác abc, biết HB = 3cm, HC = 12cm. Tính AH
a: Xét ΔDCE vuông tại D và ΔDFB vuông tại D có
\(\widehat{DCE}=\widehat{DFB}\)
Do đó: ΔDCE\(\sim\)ΔDFB
Suy ra: DC/DF=DE/DB
hay \(DC\cdot DB=DF\cdot DE\)
b: \(AH=\sqrt{HB\cdot HC}=6\left(cm\right)\)
1.cho tam giác ABC vông tại A, đường cao AH. Biết AB=3cm, BC=5cm. Tính AC, AH, BH, CH 2. Cho tam giác ABC vông tại A, đường cao AH. Biết HB=3,6cm, HC=6,4cm. Tính BC,AB,AC,AH
Bài 1:
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2=5^2-3^2=16\)
hay AC=4cm
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{3^2}{5}=1.8\left(cm\right)\\CH=\dfrac{4^2}{5}=3.2\left(cm\right)\end{matrix}\right.\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH\cdot5=3\cdot4=12\)
hay AH=2,4cm
Bài 2:
Ta có: BC=HB+HC
nên BC=3,6+6,4
hay BC=10cm
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB^2=3.6\cdot10=36\\AC^2=6.4\cdot10=64\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=6\left(cm\right)\\AC=8\left(cm\right)\end{matrix}\right.\)
Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=AH^2+HB^2\)
\(\Leftrightarrow AH^2=6^2-3.6^2=23.04\)
hay AH=4,8cm
Cho tam giác ABC vuông tại A có đường cao AH. Biết HB = 3cm, AH = 4cm. Tính AB, HC, BC, AC. Ap dung he thuc luong
Áp dụng HTL tam giác:
\(\left\{{}\begin{matrix}AH^2=BH\cdot HC\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}HC=\dfrac{AH^2}{BH}=\dfrac{16}{3}\left(cm\right)\\AB^2=3\left(3+\dfrac{16}{3}\right)=25\left(cm\right)\\AC^2=\dfrac{16}{3}\left(3+\dfrac{16}{3}\right)=\dfrac{400}{9}\left(cm\right)\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}HC=\dfrac{16}{3}\left(cm\right)\\AB=5\left(cm\right)\\AC=\dfrac{20}{3}\left(cm\right)\end{matrix}\right.\)
\(BC=\sqrt{AB^2+AC^2}=\dfrac{25}{3}\left(cm\right)\left(pytago\right)\)
Cho tam giác ABC vuông tại A , Đường cao AH; biết HB = 3cm , HC = 4cm . Tính AB, AH
Lời giải:
a.
Áp dụng hệ thức lượng trong tam giác vuông ta có:
$AH^2=BH.CH=3.4=12$
$\Rightarrow AH=\sqrt{12}=2\sqrt{3}$ (cm)
$AB^2=BH.BC=BH(BH+CH)=3(3+4)=21$
$\Rightarrow AB=\sqrt{21}$ (cm)
cho tam giác abc vuông tại a , đường cao ah
a, cho biết AB=3cm , AC=4cm.Tính độ dài các đoạn thẳng BH, CH,AH,BC
b, cho biết BH=9cm ,CH=16cm.Tính độ dài các đoạn thẳng AB,AC,BC,AH
GIÚP MK NHA CẦN GẤP
\(a,\)Áp dụng hệ thức lượng trong tam giác vuông ABC ta có
\(BC^2=AB^2+AC^2\Rightarrow BC^2=3^2+4^2\Rightarrow BC=\sqrt{9+16}\)
\(\Rightarrow BC=5cm\)
\(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}\Rightarrow BH=\frac{3^2}{5}=\frac{9}{5}cm\)
\(AC^2=CH.BC\Rightarrow CH=\frac{AC^2}{BC}\Rightarrow CH=\frac{4^2}{5}=\frac{16}{5}cm\)
\(AH^2=\frac{9}{5}.\frac{16}{5}\Rightarrow AH^2=\frac{144}{25}\Rightarrow AH=\sqrt{\frac{144}{25}}=\frac{12}{5}cm\)
\(b,\)
\(BC=BH+CH\Rightarrow BC=9+16\Rightarrow BC=25cm\)
\(AB^2=BH.BC\Rightarrow AB^2=9.25\Rightarrow AB=\sqrt{225}=15cm\)
\(AC^2=CH.BC\Rightarrow AC^2=16.25\Rightarrow AC=\sqrt{400}=20cm\)
\(AH^2=BH.CH\Rightarrow AH^2=9.16\Rightarrow AH=\sqrt{144}=12cm\)
cho tam giác ABC vuông tại A, đường cao AH = 2 cm,AB=3cm .Tính HB,HC,AC,BC
Xét tam giác ABH vuông tại H có:
\(AB^2=BH^2+AH^2\left(Pytago\right)\)
\(\Rightarrow BH=\sqrt{AB^2-AH^2}=\sqrt{3^2-2^2}=\sqrt{5}\left(cm\right)\)
Áp dụng HTL trong tam giác ABC vg tại A có đg cao AH:
\(AH^2=BH.HC\)
\(\Rightarrow HC=\dfrac{AH^2}{BH}=\dfrac{2^2}{\sqrt{5}}=\dfrac{4\sqrt{5}}{5}\left(cm\right)\)
Ta có: \(AC^2=HC^2+AH^2\left(Pytago\right)\)
\(\Rightarrow AC=\sqrt{AH^2+HC^2}=\sqrt[]{2^2+\left(\dfrac{4\sqrt{5}}{5}\right)^2}=\dfrac{6\sqrt{5}}{5}\left(cm\right)\)
Ta có: \(BC=HC+BH=\sqrt{5}+\dfrac{4\sqrt{5}}{5}=\dfrac{5+4\sqrt{5}}{5}\left(cm\right)\)
1, Tam giác ABC vuông tại A, kẻ đường cao AH
a.Tính AB, AC,BC, HC nếu AH= 6cm, BH= 4,5cm
b.Biết AB= 6cm, HB- 3cm. Tính AH, AC,CH
5, Cho tam giác ABC vuông tại A có AB=21cm, góc C= 40 độ
a.Tính AC
b,Tính BC
Bài 5:
a) Xét ΔABC vuông tại A có
\(AC=AB\cdot\cot\widehat{C}\)
\(=21\cdot\cot40^0\)
\(\simeq25,03\left(cm\right)\)
b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=21^2+25,03^2=1067,5009\)
hay \(BC\simeq32,67\left(cm\right)\)