cho góc nhọn XOY.trên Ox lấy A trên Oy lấy B sao cho OA=OB.từ A kẻ đường thẳng vuông góc Ox cắt Oy ở C.từ B kẻ đường thẳng vuông góc Oy cắt Ox ở D.
a) tam giác OAB cân
b)tam giác CD cân
c)CD // AB
GIÚP MK VS!!!
cho góc nhọn xoy.trên ox lấy a trên oy lấy b sao cho oa=ob.từ a kẻ đường thẳng vuông góc ox cắt oy ở e.từ b kẻ đường thẳng vuông góc oy cắt ox ở f.ae và bf cắt nhau ở i.cm a)ae=bf b)tam giác bfi=bei c)oi là tpg của aob
mình đang cần ai trả lời tick luôn
cho góc nhọn xoy trên tia ox lấy điểm A,trên tia oy lấy điểm B sao cho OA=OB.Từ a kẻ đường thẳng vuông góc với ox cắt oy tại M,từ B kẻ đường thẳng vuông góc với oy cắt ox tại m
a)chứng minh OAM=OBN
b)tam giác IMN là tam giác j? vì sao? gọi I là gia điểm AM,BN
a: Xét ΔOAM vuông tại A và ΔOBN vuông tại B có
OA=OB
\(\widehat{AOM}\) chung
Do đó: ΔOAM=ΔOBN
b: Xét ΔBMN vuông tại B và ΔANM vuông tại A có
NM chung
BN=AM
Do đó: ΔBMN=ΔANM
Suy ra: \(\widehat{IMN}=\widehat{INM}\)
hay ΔIMN cân tại I
Cho góc nhọn xOy.Trên tia Ox lấy điểm A,trên tia Oy lấy điểm B sao cho OA = O.Qua A kẻ đường vuông góc với Ox cắt Oy ở D.Qua B kẻ đường vuông góc với Oy cắt Ox ở C.Gọi E là giao điểm của AD và BC a)tam giác AOE = tam giác BOE b)tam giác ECD cân c)OE cắt CD tại H.OH vuông góc CD
a) Xét 2 tam giác vuông OAC và tam giác OBD có:
OA = OB (gt)
O là góc chung
suy ra tam giác OAC = tam giác OBD (cạnh góc vuông - góc nhọn kề cạnh ấy)
b) Ta có : OD = OA + AD
OC = OB + BC
mà OD = OC (vì tam giác OAC = tam giác OBD)
OA = OB ( gt)
suy ra AD = BC
Xét 2 tam giác vuông ADI và tam giác BCI có:
AD = BC (cmt)
góc D = góc C (vì tam giác OAC = tam giác OBD)
suy ra tam giác ADI và tam giác BCI (cạnh goác vuông - góc nhọn kề cạnh ấy)
suy ra IA = IB (2 cạnh tương ứng)
c)Xét 2 tam giác vuông OAI và tam giác OBI có:
OI là cạnh chung
OA = OB (gt)
suy ra tam giác OAI = tam giác OBI (2 cạnh góc vuông)
suy ra góc O1 = góc O2 (2 góc tương ứng)
suy ra OI là tia phân giác của góc xOy
Cho góc xoy nhọn , trên tia Ox lấy điểm A , trên tia Oy lấy B sao cho OA =OB . Từ A kẻ đường thẳng vuông góc OX , từ B kẻ đường thẳng vuông góc vs Oy cắt nhau tại I
a, CMR: tam giác IAB cân
b,CMR;OI là tia phân giác của góc xOy
c, Gọi AI cắt Oy tại D , BI cắt Ox tại C , CMR: tam giác OBC = tam giác OAD
d, CMR: AB//CD
a, NỐi O với I
Xét Tam giác OAI và tam giác OBI có
OA=OB
A=B=90 độ
OI chung
=>HAI tam giác bằng nhau
=>AI=BI (t/ư)
=>tam giác AIB cân tại I
Cho góc xOy có số đo 350. Trên tia Ox lấy điểm A. Qua A kẻ đường thẳng vuông góc với Ox cắt Oy ở B. Qua B kẻ đường thẳng vuông góc với Oy cắt Ox ở C. Qua C kẻ đường thẳng vuông góc với Ox cắt Oy ở D.
a) A) Có bao nhiêu tam giác vuông trong hình vẽ?
b) Tính số đo của các góc
cho góc nhọn xOy.Trên tia Ox lấy điểm A,trên tia Oy lấy điểm B sao cho OA=OB.Kẻ đường thẳng vuông góc với Ox tại A cắt Oy tai D.Kẻ đường thẳng vuông góc với Oy tại B cắt Ox Tại C.Giao điểm của AD và BC là E.Nối OE,CD
a)chứng minh OE là phân giác của góc xOy
b)chứng minh tam giác ECD là tam giác cân
c)tia OE cắt CD tại H.Chứng minh OH vuông góc với CD
Cho góc nhọn xOy. Trên Ox lấy điểm A, trên Oy lấy điểm B sao cho OA=OB. Từ A kẻ đường thẳng vuông góc với Ox cắt Oy ở E, từ B kẻ đường thẳng vuông góc với Oy cắt Ox ở F. AE và BF cắt nhau tại I. Chứng minh:
a) AE = BF
b)Tam giác AFI = tam giác BEI
c)Oi là tia phân giác của góc AOB.
Cho góc xoy nhọn , trên tia Ox lấy điểm A , trên tia Oy lấy B sao cho OA =OB . Từ A kẻ đường thẳng vuông góc OX , từ B kẻ đường thẳng vuông góc vs Oy cắt nhau tại I
a, CMR: tam giác IAB cân
b,CMR;OI là tia phân giác của góc xOy
c, Gọi AI cắt Oy tại D , BI cắt Ox tại C , CMR: tam giác OBC = tam giác OAD
d, CMR: AB//CD
cho góc nhọn xOy trên Ox lấy điểm A , trên Oy lấy điểm B sao cho OA=OB . Từ A kẻ đường thẳng vuông góc với Ox cắt Oy ở E . Từ B kẻ đường thẳng vuông góc với Oy cắt Ox ở F. AE và BF cắt nhau tại I
a)chứng minh AE = BF
b) chứng minh tam giác AFI = tam giác BEI
c) chứng minh OI là tia phân giác của góc AOB
Ta có hình vẽ:
a/ Xét tam giác OAE và tam giác OBF có:
OA = OB (GT)
O: góc chung
\(\widehat{A}\)=\(\widehat{B}\)=900 (GT)
=> tam giác OAE = tam giác OBF (g.c.g)
=> AE = BF (2 góc tương ứng)
b/ Ta có: \(\widehat{E}\)=\(\widehat{F}\) (vì tam giác OAE = tam giác OBF)(1)
Ta có: \(\widehat{OAI}\)=\(\widehat{OBI}\)(GT) (*)
Mà \(\widehat{OAI}\)+\(\widehat{IAF}\)=1800 (kề bù) (**)
và \(\widehat{OBI}\)+\(\widehat{IBE}\)=1800 (kề bù) (***)
Từ (*),(**),(***) => \(\widehat{IAF}\)=\(\widehat{IBE}\) (2)
Ta có: AF = BE (3)
Từ (1),(2),(3) => tam giác AFI = tam giác BEI (g.c.g)
c/ Xét tam giác AIO và tam giác BIO có:
OI: cạnh chung
OA = OB (GT)
AI = BI (vì tam giác AFI = tam giác BEI)
=> tam giác AIO = tam giác BIO (c.c.c)
=> \(\widehat{AOI}\)=\(\widehat{BOI}\) (2 góc tương ứng)
=> OI là phân giác \(\widehat{AOB}\) (đpcm)