cho góc nhọn xOy trên Ox lấy điểm A , trên Oy lấy điểm B sao cho OA=OB . Từ A kẻ đường thẳng vuông góc với Ox cắt Oy ở E . Từ B kẻ đường thẳng vuông góc với Oy cắt Ox ở F. AE và BF cắt nhau tại I
a)chứng minh AE = BF
b) chứng minh tam giác AFI = tam giác BEI
c) chứng minh OI là tia phân giác của góc AOB
Ta có hình vẽ:
a/ Xét tam giác OAE và tam giác OBF có:
OA = OB (GT)
O: góc chung
\(\widehat{A}\)=\(\widehat{B}\)=900 (GT)
=> tam giác OAE = tam giác OBF (g.c.g)
=> AE = BF (2 góc tương ứng)
b/ Ta có: \(\widehat{E}\)=\(\widehat{F}\) (vì tam giác OAE = tam giác OBF)(1)
Ta có: \(\widehat{OAI}\)=\(\widehat{OBI}\)(GT) (*)
Mà \(\widehat{OAI}\)+\(\widehat{IAF}\)=1800 (kề bù) (**)
và \(\widehat{OBI}\)+\(\widehat{IBE}\)=1800 (kề bù) (***)
Từ (*),(**),(***) => \(\widehat{IAF}\)=\(\widehat{IBE}\) (2)
Ta có: AF = BE (3)
Từ (1),(2),(3) => tam giác AFI = tam giác BEI (g.c.g)
c/ Xét tam giác AIO và tam giác BIO có:
OI: cạnh chung
OA = OB (GT)
AI = BI (vì tam giác AFI = tam giác BEI)
=> tam giác AIO = tam giác BIO (c.c.c)
=> \(\widehat{AOI}\)=\(\widehat{BOI}\) (2 góc tương ứng)
=> OI là phân giác \(\widehat{AOB}\) (đpcm)