Cho a,b,c là độ dài 3 cạnh của 1 tam giác. chứng minh rằng :
(a+b-c)4+(b+c-a)4+(c+a-b)4>=a4+b4+c4
Với a,b,c dương (không phải độ dài 3 cạnh tam giác)
Chứng minh a4+b4+c4-2a2b2-2b2c2-2c2a2 < 0
Đề bài sai, phản ví dụ: \(a=3;b=1;c=1\) thì \(a^4+b^4+c^4-2a^2b^2-2b^2c^2-2c^2a^2=45>0\)
https://olm.vn/hoi-dap/detail/108617134952.html
Bạn xem ở đây phần phân tích đa thức thành nhân tử nhé, sau đây là phần tiếp theo
Cho 4 số a,b,c,d. Chứng minh : a4 + b4 + c4 + d4 >= a^2bc + b^2cd + c^2da + d^2ab
Áp dụng BĐT Cauchy ta có:
\(a^4+a^4+b^4+c^4\ge4\sqrt[4]{a^4.a^4.b^4.c^4}=4a^2bc\)
Tương tự ta cũng có:
\(b^4+b^4+c^4+d^4\ge4\sqrt[4]{b^4.b^4.c^4.d^4}=4b^2cd\)
\(c^4+c^4+d^4+a^4\ge4\sqrt[4]{c^4.c^4.d^4.a^4}=4c^2da\)
\(d^4+d^4+a^4+b^4\ge4\sqrt[4]{d^4.d^4.a^4.b^4}=4d^2ab\)
Cộng theo vế các BĐT trên, ta được:
\(4\left(a^4+b^4+c^4+d^4\right)\ge4\left(a^2bc+b^2cd+c^2da+d^2ab\right)\)
\(\Leftrightarrow a^4+b^4+c^4+d^4\ge a^2bc+b^2cd+c^2da+d^2ab\left(đpcm\right)\)
Dấu "=" xảy ra.....
Thường là đề trên cho thêm dữ kiện a,b,c,d\(\ge0\), hoặc bạn có thể dùng dấu GTTĐ( Cũng làm như trên , nhưng áp dụngthêm \(\left\{{}\begin{matrix}\left|a\right|\ge a\\\left|b\right|\ge b\end{matrix}\right.\))
Cho a b c là độ dài 3 cạnh của 1 tam giác có chu vi bằng 1 chứng minh 4/a+b +4/b+c +4/a+c =<1/a +1/b +1/c +9
a,Chứng minh bđt:
1,(a-1)(a-3)(a-4)(a-6)+9 ≥ 0
2,a2/b+c-a+b2/c+a-b+c2/a+b-c ≥ a+b+c (a,b,c là độ dài 3 cạnh tam giác)
b,Cho a2-4a+1=0.Tính giá trị của biểu thức A=a4+a2+1/a2
c,Cho a,b,c thỏa mãn 1/a+1/b+1/c=1/a+b+c.Tính giá trị của biểu thức M=(a5+b5)(b7+c7)(c2013+a2013)
1: (a-1)(a-3)(a-4)(a-6)+9
=(a^2-7a+6)(a^2-7a+12)+9
=(a^2-7a)^2+18(a^2-7a)+81
=(a^2-7a+9)^2>=0
b: \(A=\dfrac{a^4-4a^3+a^2+4a^3-16a+4+16a-3}{a^2}=\dfrac{16a-3}{a^2}\)
a^2-4a+1=0
=>a=2+căn 3 hoặc a=2-căn 3
=>A=11-4căn 3 hoặc a=11+4căn 3
Cho a,b,c là độ dài 3 cạnh một tam giác. Chứng minh a^4+b^4+c^4 >= ab(a+b+c)
Cho a,b,c là độ dài 3 cạnh của 1 tam giác.
Chứng minh rằng: 1/(a+b), 1/(a+c), 1/(b+c) cũng là dộ dài 3 cạnh của 1 tam giác
Với a,b,c là độ dài 3 cạnh tam giác thỏa mãn 2c+b=abc. Chứng minh rằng :
\(\dfrac{3}{b+c-a}+\dfrac{4}{c+a-b}+\dfrac{5}{a+b-c}\ge4\sqrt{3}\)
Cho a,b,c là độ dài 3 cạnh của 1 tam giác
CMR:
a4 + b4 + c4 - 2a2b2 - 2a2c2 - 2c2b2 <0
\(VT=\left(a^4+b^4+c^4-2a^2b^2-2a^2c^2+2b^2c^2\right)-4b^2c^2\)
\(=\left(a^2-b^2-c^2\right)^2-\left(2bc\right)^2\)
\(=\left(a^2-b^2-c^2-2bc\right)\left(a^2-b^2-c^2+2bc\right)\)
\(=\left[a^2-\left(b+c\right)^2\right]\left[a^2-\left(b-c\right)^2\right]\)
\(=\left(a-b-c\right)\left(a+b+c\right)\left(a+c-b\right)\left(a+b-c\right)\)
Do a;b;c là độ dài 3 cạnh của tam giác, ta có:
\(\left\{{}\begin{matrix}a-b-c< 0\\a+b+c>0\\a+c-b>0\\a+b-c>0\end{matrix}\right.\) \(\Rightarrow VT< 0\) (đpcm)
Câu 1:
\(a^3=a^2.a=\left(b^2+c^2\right).a>b^2.b+c^2.c=b^3+c^3\)
Câu 2:
\(\left|x-3y\right|^{2007}+\left|y+4\right|^{2008}=0\)
\(\Leftrightarrow\hept{\begin{cases}x-3y=0\\y+4=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=-12\\y=-4\end{cases}}\)