Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Blkscr
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 7 2021 lúc 14:57

Đề bài sai, phản ví dụ: \(a=3;b=1;c=1\)  thì \(a^4+b^4+c^4-2a^2b^2-2b^2c^2-2c^2a^2=45>0\)

Trên con đường thành côn...
5 tháng 7 2021 lúc 14:58

https://olm.vn/hoi-dap/detail/108617134952.html

Bạn xem ở đây phần phân tích đa thức thành nhân tử nhé, sau đây là phần tiếp theo

 

Trên con đường thành côn...
5 tháng 7 2021 lúc 15:04

undefined

Nguyễn Hồng Ngọc
Xem chi tiết
Trên con đường thành côn...
27 tháng 1 2022 lúc 17:45

Áp dụng BĐT Cauchy ta có:

\(a^4+a^4+b^4+c^4\ge4\sqrt[4]{a^4.a^4.b^4.c^4}=4a^2bc\)

Tương tự ta cũng có:

\(b^4+b^4+c^4+d^4\ge4\sqrt[4]{b^4.b^4.c^4.d^4}=4b^2cd\)

\(c^4+c^4+d^4+a^4\ge4\sqrt[4]{c^4.c^4.d^4.a^4}=4c^2da\)

\(d^4+d^4+a^4+b^4\ge4\sqrt[4]{d^4.d^4.a^4.b^4}=4d^2ab\)

Cộng theo vế các BĐT trên, ta được:

\(4\left(a^4+b^4+c^4+d^4\right)\ge4\left(a^2bc+b^2cd+c^2da+d^2ab\right)\)

\(\Leftrightarrow a^4+b^4+c^4+d^4\ge a^2bc+b^2cd+c^2da+d^2ab\left(đpcm\right)\)

Dấu "=" xảy ra.....

Thường là đề trên cho thêm dữ kiện a,b,c,d\(\ge0\), hoặc bạn có thể dùng dấu GTTĐ( Cũng làm như trên , nhưng áp dụngthêm \(\left\{{}\begin{matrix}\left|a\right|\ge a\\\left|b\right|\ge b\end{matrix}\right.\))

 

Vũ Đức Anh
Xem chi tiết
Makoto Kun
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 6 2023 lúc 9:56

1: (a-1)(a-3)(a-4)(a-6)+9

=(a^2-7a+6)(a^2-7a+12)+9

=(a^2-7a)^2+18(a^2-7a)+81

=(a^2-7a+9)^2>=0

b: \(A=\dfrac{a^4-4a^3+a^2+4a^3-16a+4+16a-3}{a^2}=\dfrac{16a-3}{a^2}\)

a^2-4a+1=0

=>a=2+căn 3 hoặc a=2-căn 3

=>A=11-4căn 3 hoặc a=11+4căn 3

Nguyễn Lê Phương Thảo
Xem chi tiết
vu duc thanh
2 tháng 5 2016 lúc 16:55

de sai ban a

Cao Thanh Nga
Xem chi tiết
Nguyen hoan
Xem chi tiết
Ngô Thành Chung
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 1 2021 lúc 23:59

\(VT=\left(a^4+b^4+c^4-2a^2b^2-2a^2c^2+2b^2c^2\right)-4b^2c^2\)

\(=\left(a^2-b^2-c^2\right)^2-\left(2bc\right)^2\)

\(=\left(a^2-b^2-c^2-2bc\right)\left(a^2-b^2-c^2+2bc\right)\)

\(=\left[a^2-\left(b+c\right)^2\right]\left[a^2-\left(b-c\right)^2\right]\)

\(=\left(a-b-c\right)\left(a+b+c\right)\left(a+c-b\right)\left(a+b-c\right)\)

Do a;b;c là độ dài 3 cạnh của tam giác, ta có:

\(\left\{{}\begin{matrix}a-b-c< 0\\a+b+c>0\\a+c-b>0\\a+b-c>0\end{matrix}\right.\) \(\Rightarrow VT< 0\) (đpcm)

le anh
Xem chi tiết
Đoàn Đức Hà
18 tháng 6 2021 lúc 21:47

Câu 1: 

\(a^3=a^2.a=\left(b^2+c^2\right).a>b^2.b+c^2.c=b^3+c^3\)

Câu 2: 

\(\left|x-3y\right|^{2007}+\left|y+4\right|^{2008}=0\)

\(\Leftrightarrow\hept{\begin{cases}x-3y=0\\y+4=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=-12\\y=-4\end{cases}}\)

Khách vãng lai đã xóa