c)(3x-2)^2-9x(x-2)=0
1.Giải phương trình:
a) 4x-8/2x^2+1 = 0
b)x^2-x-6/x-3 = 0
c)x+5/3x-6 - 1/2 = 2x-3/2x-4
d)12/1-9x^2 = 1-3x/1+3x - 1+3x/1-3x
2.Giải các phương trình:
a)5 + 96/x^2-16 = 2x-1/x+4 - 3x-1/4-x
b)3x+2/3x-2 - 6/2+3x = 9x^2/9x^2-4
c)x+1/x^2+x+1 - x-1/x^2-x+1 = 3/x(x^4+x^2+1)
Bài 1.
\( a)\dfrac{{4x - 8}}{{2{x^2} + 1}} = 0 (x \in \mathbb{R})\\ \Leftrightarrow 4x - 8 = 0\\ \Leftrightarrow 4x = 8\\ \Leftrightarrow x = 2\left( {tm} \right)\\ b)\dfrac{{{x^2} - x - 6}}{{x - 3}} = 0\left( {x \ne 3} \right)\\ \Leftrightarrow \dfrac{{{x^2} + 2x - 3x - 6}}{{x - 3}} = 0\\ \Leftrightarrow \dfrac{{x\left( {x + 2} \right) - 3\left( {x + 2} \right)}}{{x - 3}} = 0\\ \Leftrightarrow \dfrac{{\left( {x + 2} \right)\left( {x - 3} \right)}}{{x - 3}} = 0\\ \Leftrightarrow x - 2 = 0\\ \Leftrightarrow x = 2\left( {tm} \right) \)
Bài 2.
\(c)\dfrac{{x + 5}}{{3x - 6}} - \dfrac{1}{2} = \dfrac{{2x - 3}}{{2x - 4}}\)
ĐK: \(x\ne2\)
\( Pt \Leftrightarrow \dfrac{{x + 5}}{{3x - 6}} - \dfrac{{2x - 3}}{{2x - 4}} = \dfrac{1}{2}\\ \Leftrightarrow \dfrac{{x + 5}}{{3\left( {x - 2} \right)}} - \dfrac{{2x - 3}}{{2\left( {x - 2} \right)}} = \dfrac{1}{2}\\ \Leftrightarrow \dfrac{{2\left( {x + 5} \right) - 3\left( {2x - 3} \right)}}{{6\left( {x - 2} \right)}} = \dfrac{1}{2}\\ \Leftrightarrow \dfrac{{ - 4x + 19}}{{6\left( {x - 2} \right)}} = \dfrac{1}{2}\\ \Leftrightarrow 2\left( { - 4x + 19} \right) = 6\left( {x - 2} \right)\\ \Leftrightarrow - 8x + 38 = 6x - 12\\ \Leftrightarrow - 14x = - 50\\ \Leftrightarrow x = \dfrac{{27}}{5}\left( {tm} \right)\\ d)\dfrac{{12}}{{1 - 9{x^2}}} = \dfrac{{1 - 3x}}{{1 + 3x}} - \dfrac{{1 + 3x}}{{1 - 3x}} \)
ĐK: \(x \ne -\dfrac{1}{3};x \ne \dfrac{1}{3}\)
\( Pt \Leftrightarrow \dfrac{{12}}{{1 - 9{x^2}}} - \dfrac{{1 - 3x}}{{1 + 3x}} - \dfrac{{1 + 3x}}{{1 - 3x}} = 0\\ \Leftrightarrow \dfrac{{12}}{{\left( {1 - 3x} \right)\left( {1 + 3x} \right)}} - \dfrac{{1 - 3x}}{{1 + 3x}} - \dfrac{{1 + 3x}}{{1 - 3x}} = 0\\ \Leftrightarrow \dfrac{{12 - {{\left( {1 - 3x} \right)}^2} - {{\left( {1 + 3x} \right)}^2}}}{{\left( {1 - 3x} \right)\left( {1 + 3x} \right)}} = 0\\ \Leftrightarrow \dfrac{{12 + 12x}}{{\left( {1 - 3x} \right)\left( {1 + 3x} \right)}} = 0\\ \Leftrightarrow 12 + 12x = 0\\ \Leftrightarrow 12x = - 12\\ \Leftrightarrow x = - 1\left( {tm} \right) \)
Bài 2.
\(a)5 + \dfrac{{96}}{{{x^2} - 16}} = \dfrac{{2x - 1}}{{x + 4}} - \dfrac{{3x - 1}}{{4 - x}}\)
ĐK: \(x\ne\pm4\)
\( Pt \Leftrightarrow \dfrac{{96}}{{\left( {x - 4} \right)\left( {x + 4} \right)}} - \dfrac{{2x - 1}}{{x + 4}} - \dfrac{{3x - 1}}{{x - 4}} = - 5\\ \Leftrightarrow \dfrac{{96 - \left( {2x - 1} \right)\left( {x - 4} \right) - \left( {3x - 1} \right)\left( {x + 4} \right)}}{{\left( {x - 4} \right)\left( {x + 4} \right)}} = - 5\\ \Leftrightarrow \dfrac{{ - 5{x^2} - 2x + 96}}{{\left( {x - 4} \right)\left( {x + 4} \right)}} = - 5\\ \Leftrightarrow - 5{x^2} - 2x + 96 = - 5\left( {{x^2} - 16} \right)\\ \Leftrightarrow 96 - 2x = 80\\ \Leftrightarrow - 2x = - 16\\ \Leftrightarrow x = 8\left( {tm} \right)\\ b)\dfrac{{3x + 2}}{{3x - 2}} - \dfrac{6}{{2 + 3x}} = \dfrac{{9{x^2}}}{{9{x^2} - 4}} \)
ĐK: \(x \ne \dfrac{2}{3};x \ne -\dfrac{2}{3}\)
\( Pt \Leftrightarrow \dfrac{{3x + 2}}{{3x - 2}} - \dfrac{6}{{2 + 3x}} - \dfrac{{9{x^2}}}{{9{x^2} - 4}} = 0\\ \Leftrightarrow \dfrac{{{{\left( {2 + 3x} \right)}^2} - 6\left( {3x - 2} \right) - 9{x^2}}}{{\left( {3x - 2} \right)\left( {2 + 3x} \right)}} = 0\\ \Leftrightarrow \dfrac{{16 - 6x}}{{\left( {3 - 2x} \right)\left( {2 + 3x} \right)}} = 0\\ \Leftrightarrow 16 - 6x = 0\\ \Leftrightarrow - 6x = - 16\\ \Leftrightarrow x = \dfrac{8}{3}\left( {tm} \right)\\ c)\dfrac{{x + 1}}{{{x^2} + x + 1}} - \dfrac{{x - 1}}{{{x^2} - x + 1}} = \dfrac{3}{{x\left( {{x^4} + {x^2} + 1} \right)}} \)
Ta có: \(x(x^4+x^2+1)=x[(x^2+1)^2-x^2]=x(x^2+x+1)(x^2-x+1)\)
Do \(\left\{ \begin{array}{l} {x^2} + x + 1 = {\left( {x + \dfrac{1}{2}} \right)^2} + \dfrac{3}{4} > 0\forall x\\ {x^2} - x + 1 = \left( {x - \dfrac{1}{2}} \right) + \dfrac{3}{4} > 0\forall x \end{array} \right.\) nên phương trình xác định với mọi $x \ne 0$
Quy đồng, rồi biến đổi phương trình về dạng \(2x=3 \Leftrightarrow x =\dfrac{3}{2} (tm)\)
bài 2; tìm x
a, 5x ( x - 1 ) + ( x + 17 ) = 0
b, 3x ( x - 3 ) mũ 2 - 3x ( x + 3 ) mũ 2 = 0
c, 7 - 9x + 2x mũ 2 = 0
d, 7 - 9x + 2x mũ 2 = 0
a, \(5x\left(x-1\right)+\left(x+17\right)=0\)
\(\Leftrightarrow5x^2-5x+x+17=0\Leftrightarrow5x^2-4x+17=0\)
\(\Leftrightarrow5\left(x^2-\frac{4}{5}x\right)+17=0\Leftrightarrow5\left(x^2-2.\frac{2}{5}x+\frac{4}{25}-\frac{4}{25}\right)+17=0\)
\(\Leftrightarrow5\left(x-\frac{2}{5}\right)^2-\frac{4}{5}+17=0\Leftrightarrow5\left(x-\frac{2}{5}\right)^2+81\ge81>0\)
Vậy pt vô nghiệm
b, \(3x\left(x-3\right)^2-3x\left(x+3\right)^2=0\)
\(\Leftrightarrow3x\left[\left(x-3\right)^2-\left(x+3\right)^2\right]=0\)
\(\Leftrightarrow3x\left(x-3-x-3\right)\left(x-3+x+3\right)=0\Leftrightarrow x.2x=0\Leftrightarrow x=0\)
c, \(2x^2-9x+7=0\Leftrightarrow2x^2-7x-2x+7=0\)
\(\Leftrightarrow x\left(2x-7\right)-\left(2x-7\right)=0\Leftrightarrow\left(x-1\right)\left(2x-7\right)=0\Leftrightarrow x=1;x=\frac{7}{2}\)
Trả lời:
a, \(5x\left(x-1\right)+\left(x+17\right)=0\)
\(\Leftrightarrow5x^2-5x+x+17=0\)
\(\Leftrightarrow5x^2-4x+17=0\)
\(\Leftrightarrow5\left(x^2-\frac{4}{5}x+\frac{17}{5}\right)=0\)
\(\Leftrightarrow x^2-\frac{4}{5}x+\frac{17}{5}=0\)
\(\Leftrightarrow x^2-2.x.\frac{2}{5}+\frac{4}{25}+\frac{81}{25}=0\)
\(\Leftrightarrow\left(x-\frac{2}{5}\right)^2+\frac{81}{25}=0\)
Vì \(\left(x-\frac{2}{5}\right)^2+\frac{81}{25}\ge\frac{81}{25}>0\forall x\)
nên pt vô nghiệm
b, \(3x\left(x-3\right)^2-3x\left(x+3\right)^2=0\)
\(\Leftrightarrow3x\left[\left(x-3\right)^2-\left(x+3\right)^2\right]=0\)
\(\Leftrightarrow3x\left(x-3-x-3\right)\left(x-3+x+3\right)=0\)
\(\Leftrightarrow3x.\left(-9\right).2x=0\)
\(\Leftrightarrow-54x^2=0\)
\(\Leftrightarrow x^2=0\)
\(\Leftrightarrow x=0\)
Vậy x = 0 là nghiệm của pt.
c, \(7-9x+2x^2=0\)
\(\Leftrightarrow2x^2-7x-2x+7=0\)
\(\Leftrightarrow x\left(2x-7\right)-\left(2x-7\right)=0\)
\(\Leftrightarrow\left(2x-7\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x-7=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{2}\\x=1\end{cases}}}\)
Vậy x = 7/2; x = 1 là nghiệm của pt.
d, trùng ý c
a) \(9x^2-1=\left(3x-1\right)\left(5x+8\right)\)
b) \(2x^3-5x^2+3x=0\)
c) \(9x^2-16-x\left(3x+4\right)=0\)
d) \(\dfrac{5x+4}{3}-1=\dfrac{3x-2}{4}\)
a) \(9x^2-1=\left(3x-1\right)\left(5x+8\right)\)
\(\Leftrightarrow\left(3x-1\right)\left(3x+1\right)-\left(3x-1\right)\left(5x+8\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(3x+1-5x-8\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(-2x-7\right)=0\)
\(TH_1:3x-1=0\)
\(\Leftrightarrow x=\dfrac{1}{3}\)
\(TH_2:-2x-7=0\)
\(\Leftrightarrow x=-\dfrac{7}{2}\)
Vậy pt có tập nghiệm \(S=\left\{\dfrac{1}{3};-\dfrac{7}{2}\right\}\)
b) \(2x^3-5x^2+3x=0\)
\(\Leftrightarrow2x^3-2x^2-3x^2+3x=0\)
\(\Leftrightarrow2x^2\left(x-1\right)-3x\left(x-1\right)=0\)
\(\Leftrightarrow x\left(x-1\right)\left(2x-3\right)=0\)
\(TH_1:x=0\)
\(TH_2:x-1=0\)
\(\Leftrightarrow x=1\)
\(TH_3:2x-3=0\)
\(\Leftrightarrow x=\dfrac{3}{2}\)
Vậy pt có tập nghiệm \(S=\left\{0;1;\dfrac{3}{2}\right\}\)
c) \(9x^2-16-x\left(3x+4\right)=0\)
\(\Leftrightarrow\left(9x^2-16\right)-x\left(3x+4\right)=0\)
\(\Leftrightarrow\left(3x-4\right)\left(3x+4\right)-x\left(3x+4\right)=0\)
\(\Leftrightarrow\left(3x+4\right)\left(2x-4\right)=0\)
\(TH_1:3x+4=0\)
\(\Leftrightarrow x=-\dfrac{4}{3}\)
\(TH_2:2x-4=0\)
\(\Leftrightarrow x=2\)
Vậy pt có tập nghiệm \(S=\left\{-\dfrac{4}{3};2\right\}\)
d) \(\dfrac{5x+4}{3}-1=\dfrac{3x-2}{4}\)
\(\Leftrightarrow\dfrac{20x+16}{12}-\dfrac{12}{12}=\dfrac{9x-6}{12}\)
\(\Rightarrow20x+16-12=9x-6\)
\(\Leftrightarrow20x-9x=-6-16+12\)
\(\Leftrightarrow11x=-10\)
\(\Leftrightarrow x=-\dfrac{10}{11}\)
Vậy pt có nghiệm duy nhất \(x=-\dfrac{10}{11}\)
a) Ta có: \(9x^2-1=\left(3x-1\right)\left(5x+8\right)\)
\(\Leftrightarrow\left(3x-1\right)\left(3x+1\right)=\left(3x-1\right)\left(5x+8\right)\)
\(\Leftrightarrow3x+1=5x+8\)
\(\Leftrightarrow3x-5x=8-1\)
\(\Leftrightarrow-2x=7\)
\(\Leftrightarrow x=\dfrac{-7}{2}\)
Vậy \(X=\dfrac{-7}{2}\)
b) Ta có: \(2x^3-5x^2+3x=0\)
\(\Leftrightarrow x\left(2x^2-5x+3\right)=0\)
\(\Leftrightarrow x\left[\left(2x^2-2x\right)-\left(3x-3\right)\right]=0\)
\(\Leftrightarrow x\left(x-1\right)\left(2x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-1=0\\2x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=\dfrac{3}{2}\end{matrix}\right.\)
Vậy \(x=1\) hoặc \(x=0\) hoặc \(x=\dfrac{3}{2}\)
c) \(9x^2-16-x\left(3x+4\right)=0\)
\(\Leftrightarrow9x^2-16-3x^2-4x=0\)
\(\Leftrightarrow6x^2-4x-16=0\)
\(\Leftrightarrow2\left(3x^2-2x-8\right)=0\)
\(\Leftrightarrow3x^2-6x+4x-8=0\)
\(\Leftrightarrow\left(x-2\right)\left(3x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\3x+4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{-4}{3}\end{matrix}\right.\)
Vậy \(x=2\) hoặc \(x=\dfrac{-4}{3}\)
d) \(\dfrac{5x+4}{3}-1=\dfrac{3x-2}{4}\)
\(\Leftrightarrow\dfrac{20x+16}{12}-\dfrac{12}{12}=\dfrac{9x-6}{12}\)
\(\Leftrightarrow20x+16-12=9x-6\)
\(\Leftrightarrow20x+16-12-9x+6=0\)
\(\Leftrightarrow11x+10=0\)
\(\Leftrightarrow x=\dfrac{-10}{11}\)
Vậy \(x=\dfrac{-10}{11}\)
a) Ta có: \(9x^2-1=\left(3x-1\right)\left(5x+8\right)\)
\(\Leftrightarrow\left(3x-1\right)\left(3x+1\right)-\left(3x-1\right)\left(5x+8\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(3x+1-5x-8\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(-2x-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=0\\-2x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=1\\-2x=7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=-\dfrac{7}{2}\end{matrix}\right.\)
Vậy: \(S=\left\{\dfrac{1}{3};-\dfrac{7}{2}\right\}\)
\(9x^4-4x^2=0\)
\(2x^4-x^2-6=0\)
\(x^4-9x^2+100=0\)
\(x^4-3x^2-54=0\)
\(3x^4-10x^2+3=0\)
\(x^4-7x^2-18=0\)
a: \(\Leftrightarrow x^2\left(9x^2-4\right)=0\)
\(\Leftrightarrow x^2\left(3x-2\right)\left(3x+2\right)=0\)
hay \(x\in\left\{0;\dfrac{2}{3};-\dfrac{2}{3}\right\}\)
b: \(\Leftrightarrow2x^4-4x^2+3x^2-6=0\)
\(\Leftrightarrow x^2-2=0\)
hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)
d: \(\Leftrightarrow x^4-9x^2+6x^2-54=0\)
\(\Leftrightarrow x^2-9=0\)
=>x=3 hoặc x=-3
1.Giải phương trình:
a) 4x-8/2x^2+1 = 0
b)x^2-x-6/x-3 = 0
c)x+5/3x-6 - 1/2 = 2x-3/2x-4
d)12/1-9x^2 = 1-3x/1+3x - 1+3x/1-3x
2.Giải các phương trình:
a)5 + 96/x^2-16 = 2x-1/x+4 - 3x-1/4-x
b)3x+2/3x-2 - 6/2+3x = 9x^2/9x^2-4
c)x+1/x^2+x+1 - x-1/x^2-x+1 = 3/x(x^4+x^2+1)
(mong mn giúp mk, mk đang thật sự gấp, cảm ơn mọi người rất nhiều)
\(a.\frac{4x-8}{2x^2+1}=0\\ \Leftrightarrow4x-8=0\\ \Leftrightarrow4\left(x-2\right)=0\\ \Leftrightarrow x-2=0\\ \Leftrightarrow x=2\)
Vậy nghiệm của phương trình trên là \(2\)
\(b.\frac{x^2-x-6}{x-3}=0\left(x\ne3\right)\\\Leftrightarrow x^2-x-6=0\\ \Leftrightarrow x^2+2x-3x-6=0\\\Leftrightarrow x\left(x+2\right)-3\left(x+2\right)=0\\\Leftrightarrow \left(x-3\right)\left(x+2\right)=0\\\Leftrightarrow \left[{}\begin{matrix}x-3=0\\x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\left(ktm\right)\\x=-2\left(tm\right)\end{matrix}\right.\)
Vậy nghiệm của phương trình trên là \(-2\)
\(c.\frac{x+5}{3x-6}-\frac{1}{2}=\frac{2x-3}{2x-4}\left(x\ne2\right)\\ \Leftrightarrow\frac{x+5}{3\left(x-2\right)}-\frac{1}{2}=\frac{2x-3}{2\left(x-2\right)}\\\Leftrightarrow \frac{2\left(x+5\right)}{6\left(x-2\right)}-\frac{3\left(x-2\right)}{6\left(x-2\right)}=\frac{3\left(2x-3\right)}{6\left(x-2\right)}\\\Leftrightarrow 2\left(x+5\right)-3\left(x-2\right)=3\left(2x-3\right)\\\Leftrightarrow 2x+10-3x+6=6x-9\\\Leftrightarrow 2x-3x-6x=-10-6-9\\\Leftrightarrow -7x=-25\\\Leftrightarrow x=\frac{25}{7}\left(tm\right)\)
Vậy nghiệm của phương trình trên là \(\frac{25}{7}\)
10 Phân tích các đa thức sau thành nhân tử:
a) 5xy(x-y)-2x+2y ; b) 6x-2y-x(y-3x)
c) x^2+4x-xy-4y ; d) 3xy+2z-6y-xz
11 Tìm x, biết: a) 4-9x^2=0 ; b) x^2+x+1/4=0 ; c) 2x(x-3)+(x-3)=0
d) 3x(x-4)-x+4=0 ; e) x^3-1/9x=0 ; f) (3x-y)^2-(x-y)^2=0
a) 5xy ( x - y ) - 2x + 2y
= 5xy ( x - y ) - 2 ( x - y )
= ( x - y ) ( 5xy - 2 )
b) 6x-2y-x(y-3x)
= 2 ( y - 3x ) - x ( y - 3x )
= ( y - 3x ( ( 2 - x )
c) x2 + 4x - xy-4y
= x ( x + 4 ) - y ( x + 4 )
( x + 4 ) ( x - y )
d) 3xy + 2z - 6y - xz
= ( 3xy - 6y ) + ( 2z - xz )
= 3y ( x - 2 ) + z ( x - 2 )
= ( x - 2 ) ( 3y + z )
a,5xy(x-y)-2x+2y=5xy(x-y)-2(x-y)=(x-y)(5xy-2)
b,6x-2y-x(y-3x)=-2(y-3x)-x(y-3x)=(y-3x)(-2-x)
c,x^2+4x-xy-4y=x(x+4)-y(x+4)=(x+4)(x-y)
d,3xy+2z-6y-xz=(3xy-6y)+(2z-xz)=3y(x-2)+z(2-x)=3y(x-2)-z(x-2)=(x-2)(3y-z)
11)
a,4-9x^2=0
(2-3x)(2+3x)=0
2-3x=0=>x=2/3 hoặc 2+3x=0=>x=-2/3
b,x^2 +x+1/4=0
(x+1/2)^2 =0
x+1/2=0
x=-1/2
c,2x(x-3)+(x-3)=0
(x-3)(2x+1)=0
x-3=0=>x=3 hoặc 2x+1=0=>x=-1/2
d,3x(x-4)-x+4=0
3x(x-4)-(x-4)=0
(x-4)(3x-1)=0
x-4=0=>x=4 hoặc 3x-1=0=>x=1/3
e,x^3-1/9x=0
x(x^2-1/9)=0
x(x+1/3)(x-1/3)=0
x=0 hoặc x+1/3=0=>x=-1/3 hoặc x-1/3=0=>x=1/3
f,(3x-y)^2-(x-y)^2 =0
(3x-y-x+y)(3x-y+x-y)=0
2x(4x-2y)=0
4x(2x-y)=0
x=0hoặc 2x-y=0=>x=y/2
Giải các phương trình sau:
a \(x^2+3x+4=0\)
b \(3x^3-x+2=0\)
c \(x^4-4x^3-9x^2+8x+4=0\)
d \(x^4+4x^3+6x^2-5x-8=0\)
a: Ta có: \(x^2+3x+4=0\)
\(\text{Δ}=3^2-4\cdot1\cdot4=9-16=-7< 0\)
Do đó: Phương trình vô nghiệm
BÀI 1 RÚT GỌN CÁC BIỂU THỨC SAU
a)(3x-2)(9x²+6x+4)-3(9x³-2)
b)(x²+4)(x+2)(x-2)-(x²+3)(x²-3)
c)(x+1)³-(x-1)(x²+x+1)-3x(x+1)
BÀI 2 CMR
a)-4x²-4x-2<0 với mọi x
Em ơi mình đăng bài sang bên môn toán nha