Cho x e n thỏa mãn 15 - 2x = 3^2 . Khi đó giá trị của x là
A. 2
B.3
c.7
d. 12
1 Cho x,y là các số thỏa mãn I x-3 I + (y+4)^2 = 0
2 Số các giá trị nguyên của x thỏa mãn
2(IxI- 5) ( x^2 -9) =0
3 Nếu 1/2 của a bằng 2b thì 9/8a = kb . Vậy kb =
4 Số giá trị của x thỏa mãn
x^2 +7x +12 = 0
5 Biết (a+1) (b+1) = 551 khi đó giá trị của biểu thức ab+a+b = ?
Cho các số thực a, b, c, d thỏa mãn ( 2x – 1)4 = ( ax + b)4 + ( x2 + cx + d)2 với mọi giá trị của x là số thực. Tìm giá trị của biểu thức P = a + 2b + 3c + 4d
Cho các số thực a, b, c, d thỏa mãn ( 2x – 1)4 = ( ax + b)4 + ( x2 + cx + d)2 với mọi giá trị của x là số thực. Tìm giá trị của biểu thức P = a + 2b + 3c + 4d.
Bài 2
a> Tìm các số x,y thỏa mãn: x−13=y+25=x+y+1x−2x−13=y+25=x+y+1x−2
b> Cho x nguyên, tìm giá trị lớn nhất của biểu thức sau: A=2x+1x−32x+1x−3
c> Tìm số có 2 chữ số ¯¯¯¯¯abab¯ biết: (¯¯¯¯¯ab)2(ab¯)2=(a+b)3(a+b)3
¯¯¯¯¯ab
1) Cho các số thực \(a,b,c\) thỏa mãn \(a^3+b^3+c^3=3abc\) và \(a+b+c\ne0\)
Tính giá trị: \(P=\dfrac{a^2+2b^2+3c^2}{3a^2+2b^2+c^2}\)
2) Tìm các số dương \(x,y\) thỏa mãn: \(3^x=y^2+2y\)
1) \(\left\{{}\begin{matrix}a^3+b^3+c^3=3abc\\a+b+c\ne0\end{matrix}\right.\) \(\left(a;b;c\in R\right)\)
Ta có :
\(a^3+b^3+c^3\ge3abc\) (Bất đẳng thức Cauchy)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c=1\left(a^3+b^3+c^3=3abc\right)\)
Thay \(a=b=c\) vào \(P=\dfrac{a^2+2b^2+3c^2}{3a^2+2b^2+c^2}\) ta được
\(\Leftrightarrow P=\dfrac{6a^2}{6a^2}=1\)
\(3^x=y^2+2y\left(x;y>0\right)\)
\(\Leftrightarrow3^x+1=y^2+2y+1\)
\(\Leftrightarrow3^x+1=\left(y+1\right)^2\left(1\right)\)
- Với \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
\(pt\left(1\right)\Leftrightarrow3^0+1=\left(0+1\right)^2\Leftrightarrow2=1\left(vô.lý\right)\)
- Với \(\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
\(pt\left(1\right)\Leftrightarrow3^1+1=\left(1+1\right)^2=4\left(luôn.luôn.đúng\right)\)
- Với \(x>1;y>1\)
\(\left(y+1\right)^2\) là 1 số chính phương
\(3^x+1=\overline{.....1}+1=\overline{.....2}\) không phải là số chính phương
\(\Rightarrow\left(1\right)\) không thỏa với \(x>1;y>1\)
Vậy với \(\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\) thỏa mãn đề bài
Cho biểu thức M=x / x+3+2x / x-3-9-3x^2 / 9-x^2
a)Rút gọn bt M
b)Tìm x để M dương,M âm
c)Tìm giá trị của của M khi x thỏa mãn |2x+1|=5
d)Tìm x thuộc Z để M nhận giá trị nguyên
e)Tìm giá trị lớn nhất của N=M .x-3/x^2-2x+3
a: \(M=\dfrac{x^2-3x+2x^2+6x-3x^2-9}{\left(x-3\right)\left(x+3\right)}=\dfrac{3}{x+3}\)
Cho các đa thức:
A(x) = 2x^5 – 4x^3 + x^2 – 2x + 2
B(x) = x^5 – 2x^4 + x^2 – 5x + 3
C(x) = x^4 + 4x^3 + 3x^2 – 8x +4 3/16
1, Tính M(x) = A(x) – 2B(x) + C(x)
2, Tính giá trị của M(x) khi x = -√0,25
3, Có giá trị nào của x để M(x) = 0 không ?
Lời giải:
1.
\(M(x)=A(x)-2B(x)+C(x)\)
\(2x^5 – 4x^3 + x^2 – 2x + 2-2(x^5 – 2x^4 + x^2 – 5x + 3)+ (x^4 + 4x^3 + 3x^2 – 8x + \frac{43}{16})\)
\(=5x^4+2x^2-\frac{21}{16}\)
2.
Khi $x=-\sqrt{0,25}=-0,5$ thì:
\(M(x)=5.(-0,5)^4+2(-0,5)^2-\frac{21}{16}=\frac{-1}{2}\)
3)
$M(x)=0$
$\Leftrightarrow 5x^4+2x^2-\frac{21}{16}=0$
$\Leftrightarrow 80x^4+32x^2-21=0$
$\Leftrightarrow 4x^2(20x^2-7)+3(20x^2-7)=0$
$\Leftrightarrow (4x^2+3)(20x^2-7)=0$
Vì $4x^2+3>0$ với mọi $x$ thực nên $20x^2-7=0$
$\Rightarrow x=\pm \sqrt{\frac{7}{20}}$
Đây chính là giá trị của $x$ để $M(x)=0$
Cho biểu thức M=x / x+3+2x / x-3-9-3x^2 / 9-x^2
a)Rút gọn bt M
b)Tìm x để M dương,M âm
c)Tìm giá trị của của M khi x thỏa mãn |2x+1|=5
d)Tìm x thuộc Z để M nhận giá trị nguyên
e)Tìm giá trị lớn nhất của N=M .x-3/x^2-2x+3
Gọi x là giá trị thỏa mãn 5(3x + 5) – 4(2x – 3) = 5x + 3(2x – 12) + 1. Khi đó
A. x > 18
B. x < 17
C. 17 < x < 19
D. 18 < x < 20
Ta có
5(3x + 5) − 4(2x − 3) = 5x + 3(2x − 12) + 1
ó 15x + 25 − 8x + 12 = 5x + 6x – 36 + 1
ó 7x + 37 = 11x − 35
ó 4x = 72
ó x = 18
Vậy x = 18.
Suy ra 17 < x < 19.
Đáp án cần chọn là: C