Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hữu Ngọc Ánh
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 8 2022 lúc 23:58

a) Ta có: \(\widehat{ABD}+\widehat{ABC}=180^0\)(hai góc kề bù)

\(\widehat{ACE}+\widehat{ACB}=180^0\)(hai góc kề bù)

mà \(\widehat{ABC}=\widehat{ACB}\)(ΔABC cân tại A)

nên \(\widehat{ABD}=\widehat{ACE}\)

Xét ΔABD và ΔACE có 

AB=AC(ΔBAC cân tại A)

\(\widehat{ABD}=\widehat{ACE}\)(cmt)

BD=CE(gt)

Do đó: ΔABD=ΔACE(c-g-c)

Suy ra: AD=AE(Hai cạnh tương ứng)

Xét ΔADE có AD=AE(cmt)

nên ΔADE cân tại A(Định nghĩa tam giác cân)

Katory Amee
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 4 2023 lúc 23:51

a: Xét ΔABD và ΔACE có

AB=AC

góc ABD=góc ACE

BD=CE
=>ΔABD=ΔACE
=>AD=AE
b: ΔABC cân tại A

mà AM là trung tuyến

nên AM vuông góc BC

ΔADE cântại A

mà AM vuông góc

nen AM là phân giác của góc DAE

c: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

góc HAB=góc KAC

=>ΔABH=ΔACK

=>BH=CK

d: Gọi O là giao của BH và CK

góc OBC=góc HBD

góc OCB=góc KCE
mà góc HBD=góc KCE

nên góc OBC=góc OCB

=>OB=OC

=>O nằm trên trung trực của BC

=>A,M,O thẳng hàng

Katory Amee
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 4 2023 lúc 23:51

a: Xét ΔABD và ΔACE có

AB=AC

góc ABD=góc ACE

BD=CE
=>ΔABD=ΔACE
=>AD=AE
b: ΔABC cân tại A

mà AM là trung tuyến

nên AM vuông góc BC

ΔADE cântại A

mà AM vuông góc

nen AM là phân giác của góc DAE

c: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

góc HAB=góc KAC

=>ΔABH=ΔACK

=>BH=CK

d: Gọi O là giao của BH và CK

góc OBC=góc HBD

góc OCB=góc KCE
mà góc HBD=góc KCE

nên góc OBC=góc OCB

=>OB=OC

=>O nằm trên trung trực của BC

=>A,M,O thẳng hàng

Katory Amee
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 4 2023 lúc 23:51

a: Xét ΔABD và ΔACE có

AB=AC

góc ABD=góc ACE

BD=CE
=>ΔABD=ΔACE
=>AD=AE
b: ΔABC cân tại A

mà AM là trung tuyến

nên AM vuông góc BC

ΔADE cântại A

mà AM vuông góc

nen AM là phân giác của góc DAE

c: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

góc HAB=góc KAC

=>ΔABH=ΔACK

=>BH=CK

Suri
Xem chi tiết
hỏi đáp
28 tháng 3 2020 lúc 19:11

toán lớp 1 mà kinh z ? bọn trẻ lớn nhanh ghê !

A B C E D M H K N

e chịu khó gõ link này lên google nhé!

https://h.vn/hoi-dap/question/170176.html

Khách vãng lai đã xóa
Minh Dư Ngọc
28 tháng 3 2020 lúc 19:32

cái này là lớp 6 SURI chỉ chọn lớp 1 cho vui thôi

Khách vãng lai đã xóa
Huỳnh Quang Sang
28 tháng 3 2020 lúc 19:54

A A A B B B M M M D D D E E E H H H K K K C C C N N N

a) \(\Delta\)ABC cân ở A nên \(\widehat{ABC}=\widehat{ACB}\)mà \(\widehat{ABC}=\widehat{ABD}=90^0,\widehat{ACB}=\widehat{ACE}=90^0\)

=> \(\widehat{ABD}=\widehat{ACE}\)

AB = AC(hai cạnh bên của tam giác cân ABC)

BD = CE(gt)

=> \(\Delta ABD=\Delta ACE\left(c.g.c\right)\)

=> \(\widehat{ADB}=\widehat{AEC}\)

=> AD = AE

=> \(\Delta\)ADE cân ở A

b) Ta có BD = CE(gt)

BM = CM(vì M là trung điểm của BC)

=> BD + BM = CE + CM

=> DM = EM

Xét \(\Delta ADM\)và \(\Delta AEM\)có :

AD = AE(cmt)

DM = EM(cmt)

AM chung

=> \(\Delta\)ADM = \(\Delta\)AEM(c.c.c)

=> \(\widehat{DAM}=\widehat{EAM}\)(hai góc tương ứng)

=> AM là tia phân giác của góc DAE

Ta lại có : \(\Delta\)ADM = \(\Delta\)AEM(c.c.c) => \(\widehat{DAM}=\widehat{EAM}\)(cmt)

=> \(\widehat{DAM}+\widehat{EAM}=180^0\)

=> \(\widehat{DAM}=\widehat{EAM}=90^0\)

hay \(AM\perp DE\)

c) \(\Delta\)BHD và \(\Delta\)CKE có :

BD = CE (gt)

\(\widehat{HDB}=\widehat{KEC}\)(chứng minh trên)

=> \(\Delta\)BHD = \(\Delta\)CKE (ch - gn)

=> BH = CK

d) Xét \(\Delta\)AHB và \(\Delta\)AKC có :

AB = AC(gt)

BH = CK(cmt)

=> \(\Delta\)AHB = \(\Delta\)AHC(ch - cgv)

=> AH = AK

Vì AH = AK nên \(\Delta\)AHK cân ở A,do đó \(\widehat{AHK}=\frac{180^0-\widehat{A}}{2}\)(1)

Vì AD = AE nên \(\Delta\)ADE cân ở A,do đó \(\widehat{ADE}=\frac{180^0-\widehat{A}}{2}\)(2)

Từ (1) và (2) => \(\widehat{AHK}=\widehat{ADE}\)

Mà hai góc này ở vị trí đồng vị của hai đường thẳng DE và HK cắt đường thẳng AD,do đó HK //DE hay HK //BC

e) Xét \(\Delta\)AHN và \(\Delta\)AKN có :

AH = AK(gt)

AN chung

=> \(\Delta\)AHN = \(\Delta\)AKN(ch-cgv)

=> \(\widehat{HAN}=\widehat{KAN}\)

=> AN là phân giác \(\widehat{DAN}\)

Mà AM,AN đều là phân giác của \(\widehat{DAN}\)=> A,M,N thẳng hàng

Khách vãng lai đã xóa
quan leanh
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 1 2022 lúc 20:09

a: Xét ΔABD và ΔACE có

AB=AC

\(\widehat{ABD}=\widehat{ACE}\)

BD=CE

Do đó: ΔABD=ΔACE

Suy ra: AD=AE

hay ΔADE cân tại A

b: Ta có: MB+BD=MD

MC+CE=ME

và MB=MC

và BD=CE

nên MD=ME

Ta có: ΔADE cân tại A

mà AM là đường trung tuyến

nên AM là đường phân giác và cũng là đường cao

c: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

\(\widehat{HAB}=\widehat{KAC}\)

Do đó: ΔAHB=ΔAKC

Suy ra: BH=CK

d: Xét ΔADE có 

AH/AD=AK/AE
Do đó: HK//DE

hay HK//BC

Minh tú Trần
Xem chi tiết
ミ★Ƙαї★彡
19 tháng 7 2020 lúc 8:02

A B C D E M

a, Xét \(\Delta\)ABD và \(\Delta\)ACE ta có : 

AB = AC (do tam giác ABD cân đỉnh A)

BD = CE (GT)

\(\widehat{ABD}=\widehat{ACE}\left(GT\right)\)

=> \(\Delta\)ABD = \(\Delta\)ACE (c-g-c)

=> AD = AE (2 cạnh tương ứng)

=> \(\Delta\)ADE cân đỉnh A

b, Ta có : BD + BM = CE + CM <=> DM = EM 

Xét \(\Delta\)AMD và \(\Delta\)AME ta có 

AD = AE (cma)

AM chung 

DM = EM (cmt)

=> \(\Delta\)AMD = \(\Delta\)AME (c-c-c)

=> \(\widehat{MAD}=\widehat{MAE}\)( 2 góc tương ứng )

=> AM là p/g \(\widehat{DAE}\)

Ta có : \(\Delta AMD=\Delta AME\)

=> \(\widehat{AMD}=\widehat{AME}\)Mà \(\widehat{AMD}+\widehat{AME}=180^0\)

Vì \(\widehat{AMD}=\widehat{AME}\)Suy ra : \(\widehat{AMD}=\widehat{AME}=\frac{180^0}{2}=90^0\)

Vậy ta có đpcm 

Khách vãng lai đã xóa
Trang
19 tháng 7 2020 lúc 8:09

A B C D E M

a, Ta có:

     góc B + góc ABD = 180độ    ( vì ABD là góc ngoài của tam giác ABC tại B )

   góc C + góc ACE = 180độ     ( vì ACE là góc ngoài của tam giác ABC tại C )     

mà góc B = góc C   ( vì tam giác ABC cân tại A )

\(\Rightarrow\)         góc ABD = góc ACE

Xét tam giác ABD và tam giác ACE có

         AB = AC   

        góc ABD = góc ACE ( theo chứng minh trên )

        BD = CE   ( gt )

Do đó : tam giác ABD = tam giác ACE  (c.g.c)

\(\Rightarrow\)AD = AE  và góc D = góc E 

Vậy tam giác ADE là tam giác cân tại A

b,Vì M là trung điểm của BC nên 

 BM = CM

và BD = CE 

\(\Rightarrow\)BM + BD = CM + CE

\(\Rightarrow\)MD = ME

Xét tam giác AMD và tam giác AME có

        cạnh AM chung

        AD = AE ( theo câu a )

       MD = ME ( theo chứng minh trên )

Do đó : tam giác AMD = tam giác AME ( c.c.c )

\(\Rightarrow\)góc MAD = góc MAE 

Vậy AM là tia phân giác góc DAE

Học tốt !

Khách vãng lai đã xóa
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 3 2021 lúc 20:04

a) Ta có: \(\widehat{ABD}+\widehat{ABC}=180^0\)(hai góc kề bù)

\(\widehat{ACE}+\widehat{ACB}=180^0\)(hai góc kề bù)

mà \(\widehat{ABC}=\widehat{ACB}\)(Hai góc ở đáy của ΔBAC cân tại A)

nên \(\widehat{ABD}=\widehat{ACE}\)

Xét ΔABD và ΔACE có 

AB=AC(ΔABC cân tại A)

\(\widehat{ABD}=\widehat{ACE}\)(cmt)

BD=CE(gt)

Do đó: ΔABD=ΔACE(c-g-c)

Suy ra: AD=AE(Hai cạnh tương ứng)

Xét ΔADE có AD=AE(cmt)

nên ΔADE cân tại A(Định nghĩa tam giác cân)

nguyễn an phát
20 tháng 3 2021 lúc 21:38

vì ∠ACB +∠ACE=180o(2 góc kề bù)

=>∠ACE=180o-∠ACB

mà ∠ABC=∠ACB(ΔABC cân tại A)

=>∠ACE=∠ABD=180o-∠ACB

Xét ΔABD và ΔACE có:

AB=AC(ΔABC cân tại A)

BD=CE(giả thuyết)

∠ABD=∠ACE(chứng minh trên)   

=>ΔACE=ΔABD(C-G-C)

=>ΔADE cân tại A 

vì M là trung điểm của BC nên MC=MB

mà BD=CE(giả thuyết)

=>ME=MD

xét ΔAME và ΔAMD có:

AM là cạnh chung 

AE=AD(câu a)

ME=MD(chứng minh trên)

=>ΔAMD=ΔAME(C-C-C)

=> ∠DAM=∠EAM(2 góc tưng ứng)

=>AM là tia phân giác của ∠DAE

ta có:∠CAE=∠BAD(câu a)

=>∠BAH=∠CAK=∠BAC+∠CAH

xét 2 tam giác vuông AHB và AKC có:

AB=AC(Δ ABC cân tại A)

∠CAK=∠BAH(chứng minh trên)

=>ΔBAH=ΔCAK(cạnh-huyền-góc-nhọn)

=>BH=CK(2 cạnh tưng ứng)                                                                         

Hạ Tử Nhi
Xem chi tiết
Babi girl
26 tháng 8 2021 lúc 8:42

a) Gọi H là trung điểm BC. Ta có AH vuông góc vs BC ( Tính chất đường trung tuyến trong tam giác cân )

BD = CE => HD = HE => AH cùng là trung tuyến trong tam giác ADE. AH vuông góc vs BC => ADE cân (Trung tuyến cũng là dg cao)

b) Câu b => M trung vs H. AM là phân giác cũng là tình chất tam giác cân. Còn nếu muốn cm cụ thể thì. 

Xét 2 tam giác ADM và tam giác AEM. Ta có AM là cạnh chung. MD = ME (M trung điểm DE). AE = AD Tam giác cân => 2 tam giác = nhau => DPCM

c) Xét 2 tam giác EKC và tam giác DHB vuông tại K  và H

Ta có: EC = DB

Góc E = góc D => 2 tam giác = nhau ( Cạnh huyền góc nhọn)

=> BH = CK 

 

Lấp La Lấp Lánh
26 tháng 8 2021 lúc 8:59

a) Ta có: \(\widehat{ABC}=\widehat{ACB}\)(tam giác ABC cân tại A)

\(\Rightarrow180^0-\widehat{ABC}=180^0-\widehat{ACB}\)

\(\Rightarrow\widehat{ABD}=\widehat{ACE}\)

Xét tam giác ABD và tam giác ACE có:

\(AB=AC\)(tam giác ABC cân tại A)

\(\widehat{ABD}=\widehat{ACE}\left(cmt\right)\)

\(BD=CE\left(gt\right)\)

\(\Rightarrow\Delta ABD=\Delta ACE\left(c.g.c\right)\)

\(\Rightarrow AD=AE\Rightarrow\Delta ADE\) cân tại A

b) Ta có: \(BM=MC\) (M là trung điểm BC)

               \(BD=CE\left(gt\right)\)

\(\Rightarrow BM+BD=MC+CE\Rightarrow MD=ME\)

=> M là trung điểm của DE

Xét tam giác ADE vuông tại A có

AM là đường trung tuyến (M là trung điểm DE)

=> AM là tia phân giác \(\widehat{DAE}\)

Và AM là đường trung trực ΔADE => AM⊥DE

c) Xét tam giác BHD vuông tại H và tam giác CKE vuông tại K có

\(\widehat{HDB}=\widehat{KEC}\)( Tam giác ADE cân tại A)

\(BD=CE\left(gt\right)\)

\(\Rightarrow\Delta BHD=\Delta CKE\left(ch-gn\right)\)

=> BH=CK(2 cạnh tương ứng)

d) Ta có: AD=AE( tam giác ADE cân tại A)

             DH=KE( tam giác BHD = tam giác CKE)

=> AD-DH=AE-KE

=> AH=AK

=> Tam giác AHK cân tại A

\(\Rightarrow\widehat{AHK}=\dfrac{180^0-\widehat{BAC}}{2}\)

Mà \(\widehat{ADE}=\dfrac{180^0-\widehat{BAC}}{2}\) (tam giác AADE cân tại A)

\(\Rightarrow\widehat{AHK}=\widehat{ADE}\)

Mà 2 góc này là 2 góc đồng vị

=> HK//DE => HK//BC