Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hạ Tử Nhi

Cho tam giác ABC cân tại A. Trên tia đối của tia BC và tia CB lấy theo thú tự điểm D và E sao cho BD=CE.
a, Chứng minh: tam giác ADE cân.
b, Gọi M là trung điểm BC. Chứng minh: AM là tia phân giác của góc DAE và AM vuông góc DE.
c,Từ B và C kẻ BH, CK theo thứ tự vuông góc với AD,AE. Chứng minh:BH=CK.
d, Chứng minh:HK // BC.
Mọi ng giúp mình với.

Babi girl
26 tháng 8 2021 lúc 8:42

a) Gọi H là trung điểm BC. Ta có AH vuông góc vs BC ( Tính chất đường trung tuyến trong tam giác cân )

BD = CE => HD = HE => AH cùng là trung tuyến trong tam giác ADE. AH vuông góc vs BC => ADE cân (Trung tuyến cũng là dg cao)

b) Câu b => M trung vs H. AM là phân giác cũng là tình chất tam giác cân. Còn nếu muốn cm cụ thể thì. 

Xét 2 tam giác ADM và tam giác AEM. Ta có AM là cạnh chung. MD = ME (M trung điểm DE). AE = AD Tam giác cân => 2 tam giác = nhau => DPCM

c) Xét 2 tam giác EKC và tam giác DHB vuông tại K  và H

Ta có: EC = DB

Góc E = góc D => 2 tam giác = nhau ( Cạnh huyền góc nhọn)

=> BH = CK 

 

Lấp La Lấp Lánh
26 tháng 8 2021 lúc 8:59

a) Ta có: \(\widehat{ABC}=\widehat{ACB}\)(tam giác ABC cân tại A)

\(\Rightarrow180^0-\widehat{ABC}=180^0-\widehat{ACB}\)

\(\Rightarrow\widehat{ABD}=\widehat{ACE}\)

Xét tam giác ABD và tam giác ACE có:

\(AB=AC\)(tam giác ABC cân tại A)

\(\widehat{ABD}=\widehat{ACE}\left(cmt\right)\)

\(BD=CE\left(gt\right)\)

\(\Rightarrow\Delta ABD=\Delta ACE\left(c.g.c\right)\)

\(\Rightarrow AD=AE\Rightarrow\Delta ADE\) cân tại A

b) Ta có: \(BM=MC\) (M là trung điểm BC)

               \(BD=CE\left(gt\right)\)

\(\Rightarrow BM+BD=MC+CE\Rightarrow MD=ME\)

=> M là trung điểm của DE

Xét tam giác ADE vuông tại A có

AM là đường trung tuyến (M là trung điểm DE)

=> AM là tia phân giác \(\widehat{DAE}\)

Và AM là đường trung trực ΔADE => AM⊥DE

c) Xét tam giác BHD vuông tại H và tam giác CKE vuông tại K có

\(\widehat{HDB}=\widehat{KEC}\)( Tam giác ADE cân tại A)

\(BD=CE\left(gt\right)\)

\(\Rightarrow\Delta BHD=\Delta CKE\left(ch-gn\right)\)

=> BH=CK(2 cạnh tương ứng)

d) Ta có: AD=AE( tam giác ADE cân tại A)

             DH=KE( tam giác BHD = tam giác CKE)

=> AD-DH=AE-KE

=> AH=AK

=> Tam giác AHK cân tại A

\(\Rightarrow\widehat{AHK}=\dfrac{180^0-\widehat{BAC}}{2}\)

Mà \(\widehat{ADE}=\dfrac{180^0-\widehat{BAC}}{2}\) (tam giác AADE cân tại A)

\(\Rightarrow\widehat{AHK}=\widehat{ADE}\)

Mà 2 góc này là 2 góc đồng vị

=> HK//DE => HK//BC

 

 


Các câu hỏi tương tự
Lê Thùy Ly
Xem chi tiết
Chi thối
Xem chi tiết
Trương Vân Anh
Xem chi tiết
Tran Thu Uyen
Xem chi tiết
Trần Huyền Trang
Xem chi tiết
Thiên Yết
Xem chi tiết
Nguyễn Bảo
Xem chi tiết
cương Bùi
Xem chi tiết
Hoàng Hải Dương
Xem chi tiết