Giải phương trình:
a. \(x^2\)- 3x +1 =0
b.\(x^2\)- 3= 2x
Help me,plss
giải phương trình:
a)5(x-1)+17x=1-4(3x+1)
b)x^2-6x+9=4x(x-3)
c)x^2-10x+24=0
a: =>5x-5+17x=1-12x-4
=>22x-5=-12x-3
=>34x=2
hay x=1/17
b: =>\(\left(x-3\right)^2-4x\left(x-3\right)=0\)
=>(x-3)(-3x-3)=0
=>x=3 hoặc x=-1
c: =>(x-4)(x-6)=0
=>x=4 hoặc x=6
Giải phương trình:
a, \(\left(x+1+\dfrac{1}{x}\right)^2=\left(x-1-\dfrac{1}{x}\right)^2\)
b, \(\left(x-1\right)^2+3x^2=0\)
a) \(\left(x+1+\dfrac{1}{x}\right)^2=\left(x-1-\dfrac{1}{x}\right)^2\\ \Leftrightarrow\left(x+1+\dfrac{1}{x}\right)^2-\left(x-1-\dfrac{1}{x}\right)^2=0\\ \Leftrightarrow\left(x+1+\dfrac{1}{x}-x+1+\dfrac{1}{x}\right)\left(x+1+\dfrac{1}{x}+x-1-\dfrac{1}{x}\right)=0\\ \Leftrightarrow2\left(1+\dfrac{1}{x}\right)\cdot2x=0\\ \Leftrightarrow4x\left(1+\dfrac{1}{x}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
\(S=\left\{-1;0\right\}\) là tập nghiệm của pt.
b) Ta có: \(\left(x-1\right)^2+3x^2=0\)
\(\Leftrightarrow x^2-2x+1+3x^2=0\)
\(\Leftrightarrow4x^2-2x+1=0\)
\(\text{Δ}=\left(-2\right)^2-4\cdot4\cdot1=4-16=-12< 0\)
=> Phương trình vô nghiệm
Vậy: \(S=\varnothing\)
Giải phương trình:
a, 8x + 8-x + 2x + 2-x - 3 = 0
b, 9x + 9-x + 3x + 3-x + 2 = 0
giải phương trình:
a)(x+6)(3x-1)=(x-6)(x+6)
b)(x+1)^2=(2x+3)^2
`a)(x+6)(3x-1)=(x-6)(x+6)`
`<=>(x+6)(3x-1+6-x)=0`
`<=>(x+6)(2x+5)=0`
`<=>[(x=-6),(x=-5/2):}`
`b)(x+1)^2=(2x+3)^2`
`<=>(x+1)^2-(2x+3)^2=0`
`<=>(x+1-2x-3)(x+1+2x+3)=0`
`<=>(-x-2)(3x+4)=0`
`<=>[(x=-2),(x=-4/3):}`
a)
`(x+6)(3x-1)=(x-6)(x+6)`
`<=> (x+6)(3x-1)-(x-6)(x+6)=0`
`<=> (x+6)(3x-1-x+6)=0`
`<=> (x+6)(2x+5)=0`
\(< =>\left[{}\begin{matrix}x+6=0\\2x+5=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=-6\\x=-\dfrac{5}{2}\end{matrix}\right.\)
b)
`(x+1)^2 =(2x+3)^2`
`<=> (x+1)^2 -(2x+3)^2 =0`
`<=> (x+1-2x-3)(x+1+2x+3)=0`
`<=> (-x-2)(3x+4)=0`
\(< =>\left[{}\begin{matrix}-x-2=0\\3x+4=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=-2\\x=-\dfrac{4}{3}\end{matrix}\right.\)
`a)(x+6)(3x-1)=(x-6)(x+6)`
`<=> (x+6)(3x-1-x +6) =0`
`<=> (x+6)(2x+5)=0`
`<=> [(x+6=0),(2x=-5):}`
`<=>[(x=-6),(x=-5/2):}`
`b)(x+1)^2=(2x+3)^2`
`<=> (x+1)^2 - (2x+3)^2 =0`
`<=> (x+1 -2x -3)(x+1+2x +3) =0`
`<=> (-x - 2)(3x +4) =0`
`<=> (x+2)(3x +4) =0`
`<=> [(x =-2),(x =-4/3):}`
giải các phương trình:
a)(x2+3x)(x2+3x+4)=-4
b)x(x+1)(x+2)(x+3)=24
Ta có (\(^{x^{2^{ }}^{ }+3x}\)) (\(^{x^{2^{ }}+3x+4}\))
Đặt \(x^{2^{ }^{ }}+3x\) là a ta có
a.(a+4)=-4
4a+\(a^2\) -4=0
\(^{ }\left(a-2\right)^2\)=0
Suy ra a=2
hay \(x^{2^{ }^{ }^{ }}+3x=2\)
\(x^2+3x-2=0\)
𝑥=−3±17√/2
Giải các phương trình:
a) \(\left(x^2+2x+5\right)\left(x^2+4x\right)=0\)
b) \(\left(x^2-4x+4\right)\left(x^2-3x\right)=0\)
c) \(1,2x^3-x^2-0,2x=0\)
a.\(\left(x^2+2x+5\right)\left(x^2+4x\right)=0\)
Ta có: \(x^2+2x+5=x^2+2x+1+4=\left(x+1\right)^2+4\ge4>0;\forall x\)
\(\Rightarrow x^2+4x=0\)
\(\Leftrightarrow x\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)
b.\(\left(x^2-4x+4\right)\left(x^2-3x\right)=0\)
\(\Leftrightarrow\left(x-2\right)^2x\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=0\\x=3\end{matrix}\right.\)
c.\(1,2x^3-x^2-0,2x=0\)
\(\Leftrightarrow x\left(1,2x^2-x-0,2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-\dfrac{1}{6}\end{matrix}\right.\)
giải phương trình:
a)(2x-3)(2x+3)=4x(x-5)-3x
b)(2x+1)(4x-3)=4x^2-1
c)3x/x-2+x/5-x-2x^2+5/x^2-7x+10=0
\(a)PT\Leftrightarrow4x^2-9-4x^2+20x+3x=0.\\ \Leftrightarrow23x=9.\\ \Leftrightarrow x=\dfrac{9}{23}.\\ b)PT\Leftrightarrow\left(2x+1\right)\left(4x-3\right)-\left(2x+1\right)\left(2x-1\right)=0.\\\Leftrightarrow\left(2x+1\right)\left(4x-3-2x+1\right)=0.\\ \Leftrightarrow\left(2x+1\right)\left(2x-2\right)=0.\\ \Leftrightarrow\left(2x+1\right)\left(x-1\right)=0. \)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{2}.\\x=1.\end{matrix}\right.\)
Giải phương trình:
a) \(\dfrac{x^2-x-6}{x-3}=0\)
b) \(\dfrac{x+5}{3x-6}-\dfrac{1}{2}=\dfrac{2x-3}{2x-4}\)
c) \(\dfrac{12}{1-9x^2}=\dfrac{1-3x}{1+3x}-\dfrac{1+3x}{1-3x}\)
d) \(\dfrac{x+5}{x-1}=\dfrac{x+1}{x-3}-\dfrac{8}{x^2-4x+3}\)
e) \(\dfrac{x+1}{x-2}-\dfrac{5}{x+2}=\dfrac{12}{x^2-4}+1\)Thể loại truyện
a) ĐKXĐ: \(x\ne3\)
Ta có: \(\dfrac{x^2-x-6}{x-3}=0\)
\(\Leftrightarrow\dfrac{\left(x+2\right)\left(x-3\right)}{x-3}=0\)
Suy ra: x+2=0
hay x=-2(thỏa ĐK)
Vậy: S={-2}
d)
ĐKXĐ: \(x\notin\left\{1;3\right\}\)
Ta có: \(\dfrac{x+5}{x-1}=\dfrac{x+1}{x-3}-\dfrac{8}{x^2-4x+3}\)
\(\Leftrightarrow\dfrac{\left(x+5\right)\left(x-3\right)}{\left(x-1\right)\left(x-3\right)}=\dfrac{\left(x+1\right)\left(x-1\right)}{\left(x-3\right)\left(x-1\right)}-\dfrac{8}{\left(x-1\right)\left(x-3\right)}\)
Suy ra: \(x^2-3x+5x-15=x^2-1-8\)
\(\Leftrightarrow2x-15+9=0\)
\(\Leftrightarrow2x-6=0\)
hay x=3(loại)
Vậy: \(S=\varnothing\)
Bài1:Giải phương trình:
a,(5-x)(3-2x)(3x+4)=0
b,(2x-1)(3x+2)(5-x)=0
c,(2x-1)(x-3)(x+7)=0
Giúp mình với :)
d,(3-2x)(6x+4)(5-8x)=0
a,\(x\in\left\{5;1,5;\dfrac{-4}{3}\right\}\)