`a)(x+6)(3x-1)=(x-6)(x+6)`
`<=>(x+6)(3x-1+6-x)=0`
`<=>(x+6)(2x+5)=0`
`<=>[(x=-6),(x=-5/2):}`
`b)(x+1)^2=(2x+3)^2`
`<=>(x+1)^2-(2x+3)^2=0`
`<=>(x+1-2x-3)(x+1+2x+3)=0`
`<=>(-x-2)(3x+4)=0`
`<=>[(x=-2),(x=-4/3):}`
a)
`(x+6)(3x-1)=(x-6)(x+6)`
`<=> (x+6)(3x-1)-(x-6)(x+6)=0`
`<=> (x+6)(3x-1-x+6)=0`
`<=> (x+6)(2x+5)=0`
\(< =>\left[{}\begin{matrix}x+6=0\\2x+5=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=-6\\x=-\dfrac{5}{2}\end{matrix}\right.\)
b)
`(x+1)^2 =(2x+3)^2`
`<=> (x+1)^2 -(2x+3)^2 =0`
`<=> (x+1-2x-3)(x+1+2x+3)=0`
`<=> (-x-2)(3x+4)=0`
\(< =>\left[{}\begin{matrix}-x-2=0\\3x+4=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=-2\\x=-\dfrac{4}{3}\end{matrix}\right.\)
`a)(x+6)(3x-1)=(x-6)(x+6)`
`<=> (x+6)(3x-1-x +6) =0`
`<=> (x+6)(2x+5)=0`
`<=> [(x+6=0),(2x=-5):}`
`<=>[(x=-6),(x=-5/2):}`
`b)(x+1)^2=(2x+3)^2`
`<=> (x+1)^2 - (2x+3)^2 =0`
`<=> (x+1 -2x -3)(x+1+2x +3) =0`
`<=> (-x - 2)(3x +4) =0`
`<=> (x+2)(3x +4) =0`
`<=> [(x =-2),(x =-4/3):}`
\(a,\left(x+6\right)\left(3x-1\right)=\left(x-6\right)\left(x+6\right)\)
\(\Leftrightarrow\left(x+6\right)\left(3x-1\right)-\left(x-6\right)\left(x+6\right)\)
\(\Leftrightarrow\left(x+6\right)\left(3x-1-x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+6=0\\2x+5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-6\\x=-\dfrac{5}{2}\end{matrix}\right.\)
\(b,\left(x+1\right)^2=\left(2x+3\right)^2\)
\(\Leftrightarrow x^2+2x+1=4x^2+12x+9\)
\(\Leftrightarrow-3x^2-10x-8=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{4}{3}\\x=-2\end{matrix}\right.\)
\(a,\left(x+6\right)\left(3x-1\right)=\left(x-6\right)\left(x+6\right)\)
\(\Leftrightarrow\left(x+6\right)\left(3x-1\right)-\left(x-6\right)\left(x+6\right)=0\)
\(\Leftrightarrow\left(x+6\right)\left(3x-1-x-6\right)=0\)
\(\Leftrightarrow\left(x+6\right)\left(2x-7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+6=0\\2x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-6\\x=\dfrac{7}{2}\end{matrix}\right.\)
\(b,\left(x+1\right)^2=\left(2x+3\right)^2\)
\(\Leftrightarrow x^2+2x+1=4x^2+12x+9\)
\(\Leftrightarrow x^2+2x+1-4x^2-12x-9=0\)
\(\Leftrightarrow-3x^2-10x-8=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{-4}{3}\end{matrix}\right.\)