Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thanh Điền
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 7 2022 lúc 13:21

b: \(\Leftrightarrow2\cdot\cos2x\cdot\cos x+2\cdot\sin x\cdot\cos2x=\sqrt{2}\cdot\cos2x\)

\(\Leftrightarrow2\cdot\cos2x\left(\sin x+\cos x\right)=\sqrt{2}\cdot\cos2x\)

\(\Leftrightarrow\sqrt{2}\cdot\cos2x\cdot\left[\sqrt{2}\cdot\sqrt{2}\cdot\sin\left(x+\dfrac{\Pi}{4}\right)-1\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\cos2x=0\\\sin\left(x+\dfrac{\Pi}{4}\right)=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{\Pi}{2}+k\Pi\\x+\dfrac{\Pi}{4}=\dfrac{\Pi}{6}+k2\Pi\\x+\dfrac{\Pi}{4}=\dfrac{5}{6}\Pi+k2\Pi\end{matrix}\right.\)

\(\Leftrightarrow x\in\left\{\dfrac{\Pi}{4}+\dfrac{k\Pi}{2};\dfrac{-1}{12}\Pi+k2\Pi;\dfrac{7}{12}\Pi+k2\Pi\right\}\)

c: \(\Leftrightarrow2\cdot\sin2x\cdot\cos x+\sin2x=2\cdot\cos2x\cdot\cos x+\cos2x\)

\(\Leftrightarrow\sin2x\left(2\cos x+1\right)=\cos2x\left(2\cos x+1\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}\sin2x=\cos2x=\sin\left(\dfrac{\Pi}{2}-2x\right)\\\cos x=-\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\Pi}{8}+\dfrac{k\Pi}{4}\\\\x=-\dfrac{2}{3}\Pi+k2\Pi\\x=\dfrac{2}{3}\Pi+k2\Pi\end{matrix}\right.\)

Trần Linh Anh
Xem chi tiết
Trang Hà
9 tháng 8 2019 lúc 13:26

\(D=\frac{1+sin2x+cos2x}{1+sin2x-cos2x}=\frac{1+2sinxcosx+2cos^2x-1}{1+2sinxcosx-1+2sin^2x}\)

\(D=\frac{cosx\left(sinx+cosx\right)}{sinx\left(sinx+cosx\right)}=cotx\)

Trang Hà
9 tháng 8 2019 lúc 13:28

\(F=\frac{sinx+sin4x+sin7x}{cosx+cos4x+cos7x}\)

\(F=\frac{2sin4xcos3x+sin4x}{2cos4xcos3x+cos4x}\)

\(F=\frac{2sin4x\left(cos3x+1\right)}{2cos4x\left(cos3x+1\right)}=tan4x\)

Trang Hà
9 tháng 8 2019 lúc 13:32

\(G=\frac{cos2x-sin4x-cos6x}{cos2x+sin4x-cos6x}=\frac{-2sin4xsin2x-sin4x}{-2sin4xsin2x+sin4x}\)

\(G=\frac{-sin4x\left(2sin2x+1\right)}{-sin4x\left(2sin2x-1\right)}=\frac{2sin2x+1}{2sin2x-1}\)

Ryoji
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 5 2019 lúc 15:37

\(A=\frac{cosx-cos3x+cos4x-cos2x}{sinx-sin3x+sin4x-sin2x}=\frac{2sin2x.sinx-2sin3x.sinx}{-2cos2x.sinx+2cos3x.sinx}\)

\(=\frac{sin2x-sin3x}{cos3x-cos2x}=\frac{-2cos\left(\frac{5x}{2}\right)sin\left(\frac{x}{2}\right)}{-2sin\left(\frac{5x}{2}\right)sin\left(\frac{x}{2}\right)}=cot\left(\frac{5x}{2}\right)\)

\(B=sinx+2cos2x.sinx+2cos4x.sinx+2cos6x.sinx\)

\(=sinx+sin3x-sinx+sin5x-sin3x+sin7x-sin5x\)

\(=sin7x\)

Minh Khá
Xem chi tiết
Minh Khá
Xem chi tiết
Nguyễn Việt Lâm
1 tháng 5 2019 lúc 16:19

\(sin^8x-cos^8x-4sin^6x+6sin^4x-4sin^2x\)

\(=sin^8x-\left(1-sin^2x\right)^4-4sin^6x+6sin^4x-4sin^2x\)

\(=sin^8x-\left(1-4sin^2x+6sin^4x-4sin^6x+sin^8x\right)-4sin^6x+6sin^4x-4sin^2x\)\(=-1\) (bạn chép nhầm đề)

b/ \(\frac{sin6x+sin2x+sin4x}{1+cos2x+cos4x}=\frac{2sin4x.cos2x+sin4x}{1+cos2x+2cos^22x-1}=\frac{sin4x\left(2cos2x+1\right)}{cos2x\left(2cos2x+1\right)}=\frac{sin4x}{cos2x}=\frac{2sin2x.cos2x}{cos2x}=2sin2x\)

c/ \(\frac{1+sin2x}{cosx+sinx}-\frac{1-tan^2\frac{x}{2}}{1+tan^2\frac{x}{2}}=\frac{sin^2x+cos^2x+2sinx.cosx}{cosx+sinx}-\left(1-tan^2\frac{x}{2}\right)cos^2\frac{x}{2}\)

\(=\frac{\left(sinx+cosx\right)^2}{sinx+cosx}-\left(cos^2\frac{x}{2}-sin^2\frac{x}{2}\right)=sinx+cosx-cosx=sinx\)

d/ \(cos4x+4cos2x+3=2cos^22x-1+4cos2x+3\)

\(=2\left(cos^22x+2cos2x+1\right)=2\left(cos2x+1\right)^2=2\left(2cos^2x-1+1\right)^2=8cos^4x\)

e/

Nhân Trần
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 11 2019 lúc 21:04

\(cosx+cos3x+cos2x+cos4x=0\)

\(\Leftrightarrow2cos2x.cosx+2cos3x.cosx=0\)

\(\Leftrightarrow cosx.\left(cos2x+cos3x\right)=0\)

\(\Leftrightarrow cosx.cos\frac{5x}{2}.cos\frac{x}{2}=0\)

\(\Rightarrow\left[{}\begin{matrix}cosx=0\\cos\frac{5x}{2}=0\\cos\frac{x}{2}=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\\frac{5x}{2}=\frac{\pi}{2}+k\pi\\\frac{x}{2}=\frac{\pi}{2}+k\pi\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\x=\frac{\pi}{5}+\frac{k2\pi}{5}\\x=\pi+k2\pi\end{matrix}\right.\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
22 tháng 11 2019 lúc 21:08

\(sinx+sin7x+sin3x+sin5x=0\)

\(\Leftrightarrow2sin4x.cos3x+2sin4x.cosx=0\)

\(\Leftrightarrow sin4x\left(cos3x+cosx\right)=0\)

\(\Leftrightarrow sin4x.cos2x.cosx=0\)

\(\Leftrightarrow sin4x=0\)

\(\Rightarrow4x=k\pi\Rightarrow x=\frac{k\pi}{4}\)

Lý do chỉ cần 1 pt sin4x=0 do sin4x bao hàm cả cosx và cos2x ở trong đó

Khách vãng lai đã xóa
Julian Edward
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 7 2020 lúc 15:27

a/

\(\Leftrightarrow2cos6x.cos5x=cos6x\)

\(\Leftrightarrow cos6x\left(2cos5x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}cos6x=0\\cos5x=\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}6x=\frac{\pi}{2}+k2\pi\\5x=\pm\frac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{12}+\frac{k\pi}{3}\\x=\pm\frac{\pi}{15}+\frac{k2\pi}{5}\end{matrix}\right.\)

Nguyễn Việt Lâm
25 tháng 7 2020 lúc 15:30

b/

\(\Leftrightarrow sin2x+sin6x-\left(cos5x+cosx\right)=0\)

\(\Leftrightarrow2sin4x.cos2x-2cos3x.cos2x=0\)

\(\Leftrightarrow cos2x\left(sin4x-cos3x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\sin4x=cos3x=sin\left(\frac{\pi}{2}-3x\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=\frac{\pi}{2}+k\pi\\4x=\frac{\pi}{2}-3x+k2\pi\\4x=3x-\frac{\pi}{2}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+\frac{k\pi}{2}\\x=\frac{\pi}{14}+\frac{k2\pi}{7}\\x=-\frac{\pi}{2}+k2\pi\end{matrix}\right.\)

Nguyễn Việt Lâm
25 tháng 7 2020 lúc 15:33

c/

\(\Leftrightarrow sinx+sin3x+sin2x=cosx+cos3x+cos2x\)

\(\Leftrightarrow2sin2x.cosx+sin2x=2cos2x.cosx+cos2x\)

\(\Leftrightarrow sin2x\left(2cosx+1\right)=cos2x\left(2cosx+1\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2cosx+1=0\\sin2x=cos2x=sin\left(\frac{\pi}{2}-2x\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=-\frac{1}{2}\\2x=\frac{\pi}{2}-2x+k2\pi\\2x=2x-\frac{\pi}{2}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\pm\frac{2\pi}{3}+k2\pi\\x=\frac{\pi}{8}+\frac{k\pi}{2}\\\end{matrix}\right.\)

Hồng Yến Nguyễn
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 6 2020 lúc 22:24

\(\frac{sin2x}{cosx+cos3x}=\frac{2sinx.cosx}{2cos2x.cosx}=\frac{sinx}{cos2x}\)

Đố thằng nào biết tao là...
Xem chi tiết
Nguyễn Việt Lâm
31 tháng 7 2020 lúc 23:02

a/

\(\Leftrightarrow4cos^3x-3cosx+2cos^2x-1-cosx-1=0\)

\(\Leftrightarrow2cos^3x+cos^2x-2cosx-1=0\)

\(\Leftrightarrow cos^2x\left(2cosx+1\right)-\left(2cosx+1\right)=0\)

\(\Leftrightarrow\left(cos^2x-1\right)\left(2cosx+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\2cosx+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\cosx=-\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\pm\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)

Nguyễn Việt Lâm
31 tháng 7 2020 lúc 23:06

b/

\(cos\left(8sinx\right)=1\)

\(\Leftrightarrow8sinx=k2\pi\)

\(\Leftrightarrow sinx=\frac{k\pi}{4}\)

Do \(-1\le sinx\le1\Rightarrow-1\le\frac{k\pi}{4}\le1\)

\(\Rightarrow k=\left\{-1;0;1\right\}\)

\(\Rightarrow\left[{}\begin{matrix}sinx=-\frac{\pi}{4}\\sinx=0\\sinx=\frac{\pi}{4}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\pm arcsin\left(\frac{\pi}{4}\right)+k2\pi\\x=\pi\pm arcsin\left(\frac{\pi}{4}\right)+k2\pi\\x=k\pi\end{matrix}\right.\)

Nguyễn Việt Lâm
31 tháng 7 2020 lúc 23:13

c/

\(\Leftrightarrow1+2cos^2x-1+cosx=0\)

\(\Leftrightarrow2cos^2x-cosx=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\cosx=\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\x=\pm\frac{\pi}{3}+k2\pi\end{matrix}\right.\)

d/

Đặt \(\left\{{}\begin{matrix}\left|sinx\right|=a\ge0\\cosx=b\end{matrix}\right.\) ta được hệ:

\(\left\{{}\begin{matrix}a+3b=2\\a^2+b^2=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=2-3b\\a^2+b^2=1\end{matrix}\right.\)

\(\Rightarrow\left(2-3b\right)^2+b^2-1=0\)

\(\Rightarrow10b^2-12b+3=0\Rightarrow\left[{}\begin{matrix}b=\frac{6+\sqrt{6}}{10}\Rightarrow a=\frac{2-3\sqrt{6}}{10}\left(l\right)\\b=\frac{6-\sqrt{6}}{10}\Rightarrow a=\frac{2+3\sqrt{6}}{10}\end{matrix}\right.\)

\(\Rightarrow cosx=\frac{6-\sqrt{6}}{10}\)

\(\Rightarrow x=\pm arccos\left(\frac{6-\sqrt{6}}{10}\right)+k2\pi\)