Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Chàng Trai 2_k_7
Xem chi tiết
Lê Tài Bảo Châu
2 tháng 11 2019 lúc 19:11

Ta có: \(\frac{a}{b}=\frac{c}{d}\)

\(\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{ac}{bd}=\frac{a^2-c^2}{b^2-d^2}\)( tính chất của dãy tỉ số bằng nhau )

Vậy ...

Khách vãng lai đã xóa
•Mυη•
2 tháng 11 2019 lúc 19:17

TL :

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)

=> Vế trái \(=\frac{ac}{bd}=\frac{bkdk}{bd}=k^2\)

=> Vế phải \(=\frac{a^2+c^2}{b^2+d^2}=\frac{b^2k^2+d^2k^2}{b^2+d^2}=\frac{k^2.\left(b^2+d^2\right)}{b^2+d^2}=k^2\)

\(\Rightarrow\)Vế trái = Vế phải

\(\Rightarrowđpcm\)

Khách vãng lai đã xóa
Kiệt Nguyễn
2 tháng 11 2019 lúc 19:17

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

\(\Rightarrow\frac{ac}{bd}=\frac{bdk^2}{bd}=k^2\)(1)

và \(\frac{a^2-c^2}{b^2-d^2}=\frac{b^2k^2-d^2k^2}{b^2-d^2}=\frac{k^2\left(b^2-d^2\right)}{b^2-d^2}=k^2\)(2)

Từ (1) và (2) suy ra \(\frac{ac}{bd}=\frac{bdk^2}{bd}=\frac{a^2-c^2}{b^2-d^2}\left(đpcm\right)\)

Khách vãng lai đã xóa
Dũng Nguyễn Xuân
Xem chi tiết
LÊ BẢO QUỐC
Xem chi tiết
Trần Thị Hảo
Xem chi tiết
Đỗ Thị Huyền Trang
11 tháng 12 2017 lúc 20:30

ta có :

\(\dfrac{a}{b}\)=\(\dfrac{c}{d}\) \(\Rightarrow\) \(\dfrac{a}{c}\) = \(\dfrac{b}{d}\)

đặt \(\dfrac{a}{c}\) = \(\dfrac{b}{d}\) = k \(\Rightarrow\) a = ck ; b = dk

\(\dfrac{ac}{bd}\) = \(\dfrac{ck.c}{dk.d}\) = \(\dfrac{c^2.k}{d^2.k}\) = \(\dfrac{c^2}{d^2}\) (1)

\(\dfrac{a^2+c^2}{b^2+d^2}\) = \(\dfrac{\left(ck\right)^2+c^2}{\left(dk\right)^2+d^2}\) = \(\dfrac{c^2.k^2+c^2}{d^2.k^2+d^2}\) = \(\dfrac{c^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}\) = \(\dfrac{c^2}{d^2}\)(2)

từ (1) , (2) \(\Rightarrow\) \(\dfrac{ac}{bd}\) = \(\dfrac{a^2+c^2}{b^2+d^2}\)

Do Nga
Xem chi tiết
Nguyễn Tất Thành
Xem chi tiết
Đức Nhẫn
Xem chi tiết
ỵyjfdfj
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 11 2021 lúc 22:36

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

Ta có: \(\dfrac{a^2-c^2}{b^2-d^2}=k^2\)

\(\dfrac{ac}{bd}=k^2\)

Do đó: \(\dfrac{a^2-c^2}{b^2-d^2}=\dfrac{ac}{bd}\)

Nguyễn Ngọc Thảo Linh
Xem chi tiết
Minh Triều
11 tháng 7 2015 lúc 20:18

đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)

suy ra:\(\frac{ac}{bd}=\frac{bk.dk}{bd}=k.k=k^2\)

\(\frac{a^2+c^2}{b^2+d^2}=\frac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\frac{b^2k^2+d^2k^2}{b^2+d^2}=\frac{k^2.\left(b^2+d^2\right)}{b^2+d^2}=k^2\)

vậy \(\frac{ab}{bd}=\frac{a^2+c^2}{b^2+d^2}\)

Lê Chí Cường
11 tháng 7 2015 lúc 20:19

Ta có:\(\frac{a}{b}=\frac{c}{d}=>\frac{a}{b}.\frac{c}{d}=\frac{c}{d}.\frac{c}{d}=>\frac{ac}{bd}=\frac{c^2}{d^2}\)

          \(\frac{c}{d}=\frac{a}{b}=>\frac{a}{b}.\frac{c}{d}=\frac{a}{b}.\frac{a}{b}=>\frac{ac}{bd}=\frac{a^2}{b^2}\)

=>\(\frac{ac}{bd}=\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\)

=>\(\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\)

Anna Nguyen
4 tháng 10 2016 lúc 21:22

\(\frac{a}{b}\).\(\frac{c}{d}\)=\(\frac{c}{d}.\frac{c}{d}\)là sao? và tương tự ở dưới???