Violympic toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trần Thị Hảo

Cho tỉ lệ thức a/b = c/d. Chứng minh rằng: ac/bd =(a^2 + c^2)/(b^2 + d^2)

Đỗ Thị Huyền Trang
11 tháng 12 2017 lúc 20:30

ta có :

\(\dfrac{a}{b}\)=\(\dfrac{c}{d}\) \(\Rightarrow\) \(\dfrac{a}{c}\) = \(\dfrac{b}{d}\)

đặt \(\dfrac{a}{c}\) = \(\dfrac{b}{d}\) = k \(\Rightarrow\) a = ck ; b = dk

\(\dfrac{ac}{bd}\) = \(\dfrac{ck.c}{dk.d}\) = \(\dfrac{c^2.k}{d^2.k}\) = \(\dfrac{c^2}{d^2}\) (1)

\(\dfrac{a^2+c^2}{b^2+d^2}\) = \(\dfrac{\left(ck\right)^2+c^2}{\left(dk\right)^2+d^2}\) = \(\dfrac{c^2.k^2+c^2}{d^2.k^2+d^2}\) = \(\dfrac{c^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}\) = \(\dfrac{c^2}{d^2}\)(2)

từ (1) , (2) \(\Rightarrow\) \(\dfrac{ac}{bd}\) = \(\dfrac{a^2+c^2}{b^2+d^2}\)


Các câu hỏi tương tự
dream XD
Xem chi tiết
Trần Khởi My
Xem chi tiết
Rosie
Xem chi tiết
chíp chíp
Xem chi tiết
Roxie
Xem chi tiết
Nguyễn Đỗ Minh Khoa
Xem chi tiết
Trương Thị Cẩm Vy
Xem chi tiết
Nhan Thanh
Xem chi tiết
Trần Quốc Tuấn hi
Xem chi tiết