A= /dfrac{√x}{√x +3}
tìm x ∈ Z để A ∈ Z
Bài 1: Cho A=\(\left(\dfrac{2}{\sqrt{x}-3}+\dfrac{1}{\sqrt{x}+3}\right)\div\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\) (x≥0; x≠9)
a, Rút gọn A
b, Tính A khi \(x=7+4\sqrt{3}\)
c, Tìm x để A=\(\dfrac{3}{5}\)
d, Tìm x để A>1
e, Tìm x∈Z để A∈Z
(a) Với \(x\ge0,x\ne9\), ta có: \(A=\left(\dfrac{2}{\sqrt{x}-3}+\dfrac{1}{\sqrt{x}+3}\right):\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)
\(=\dfrac{2\left(\sqrt{x}+3\right)+\left(\sqrt{x}-3\right)}{x-9}:\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)
\(=\dfrac{3\left(\sqrt{x}+1\right)}{x-9}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(=\dfrac{3}{\sqrt{x}+3}.\)
(b) Ta có: \(x=7+4\sqrt{3}=\left(2+\sqrt{3}\right)^2\)
\(\Rightarrow\sqrt{x}=2+\sqrt{3}\).
Thay vào biểu thức \(A\) (thỏa mãn điều kiện), ta được: \(A=\dfrac{3}{2+\sqrt{3}+3}=\dfrac{3}{5+\sqrt{3}}\)
\(=\dfrac{3\left(5-\sqrt{3}\right)}{5^2-\left(\sqrt{3}\right)^2}=\dfrac{15-3\sqrt{3}}{22}.\)
(c) Để \(A=\dfrac{3}{5}\Rightarrow\dfrac{3}{\sqrt{x}+2}=\dfrac{3}{5}\)
\(\Rightarrow\sqrt{x}+2=5\Leftrightarrow x=9\) (không thỏa mãn).
Vậy: \(x\in\varnothing.\)
(d) Để \(A>1\Leftrightarrow A-1>0\Rightarrow\dfrac{3}{\sqrt{x}+3}-1>0\)
\(\Leftrightarrow\dfrac{1-\sqrt{x}}{\sqrt{x}+3}>0\Rightarrow1-\sqrt{x}>0\) (do \(\sqrt{x}+3>0\forall x\inĐKXĐ\))
\(\Rightarrow x< 1\). Kết hợp với điều kiện thì \(0\le x< 1.\)
(e) \(A\in Z\Rightarrow\dfrac{3}{\sqrt{x}+3}\in Z\Rightarrow\left(\sqrt{x}+3\right)\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}+3=1\\\sqrt{x}+3=-1\\\sqrt{x}+3=3\\\sqrt{x}+3=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=-2\left(VL\right)\\\sqrt{x}=-4\left(VL\right)\\\sqrt{x}=0\Leftrightarrow x=0\left(TM\right)\\\sqrt{x}=-6\left(VL\right)\end{matrix}\right.\)
Vậy: \(x=0.\)
A= \(\dfrac{x}{x-3}\)
a) tính A biết lx-2l=1
b) tìm x∈Z để A∈Z
\(ĐK:x\ne3\\ a,\left|x-2\right|=1\Leftrightarrow\left[{}\begin{matrix}x=1+2=3\left(ktm\right)\\x=-1+2=1\left(tm\right)\end{matrix}\right.\Leftrightarrow x=1\\ \Leftrightarrow A=\dfrac{1}{1-3}=-\dfrac{1}{2}\\ b,A=\dfrac{x-3+3}{x-3}=1+\dfrac{3}{x-3}\in Z\\ \Leftrightarrow x-3\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\\ \Leftrightarrow x\in\left\{0;2;4;6\right\}\)
ĐKXĐ: \(x\ne3\)
a) \(\left|x-2\right|=1\)\(\Rightarrow\left[{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=3\left(ktm\right)\\x=1\left(tm\right)\end{matrix}\right.\)
\(A=\dfrac{x}{x-3}=\dfrac{1}{1-3}=-\dfrac{1}{2}\)
b) \(A=\dfrac{x-3+3}{x-3}=1+\dfrac{3}{x-3}\in Z\)
\(\Rightarrow\left(x-3\right)\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
\(\Rightarrow x\in\left\{0;2;4;6\right\}\)
A=\(\dfrac{x}{x-4}+\dfrac{1}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\)
a) Rút gọn A ( tìm đkxđ )
b)Tìm A khi x = 36
c)Tìm x để A= -1/3
d) Tìm x để A>0
e)Tìm x thuộc Z để A thuộc Z
ĐKXĐ: \(x\ge0;x\ne4\)
\(A=\dfrac{x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{x+2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)
b. \(x=36\Rightarrow A=\dfrac{\sqrt{36}}{\sqrt{36}-2}=\dfrac{6}{6-2}=\dfrac{3}{2}\)
c. \(A=-\dfrac{1}{3}\Rightarrow\dfrac{\sqrt{x}}{\sqrt{x}-2}=-\dfrac{1}{3}\Rightarrow3\sqrt{x}=2-\sqrt{x}\)
\(\Rightarrow4\sqrt{x}=2\Rightarrow\sqrt{x}=\dfrac{1}{2}\Rightarrow x=\dfrac{1}{4}\)
d. \(A>0\Rightarrow\dfrac{\sqrt{x}}{\sqrt{x}-2}>0\Rightarrow\sqrt{x}-2>0\Rightarrow x>4\)
e. \(A=\dfrac{\sqrt{x}-2+2}{\sqrt{x}-2}=1+\dfrac{2}{\sqrt{x}-2}\in Z\Rightarrow\sqrt{x}-2=Ư\left(2\right)\)
\(\Rightarrow\sqrt{x}-2=\left\{-2;-1;1;2\right\}\)
\(\Rightarrow\sqrt{x}=\left\{0;1;3;4\right\}\Rightarrow x=\left\{0;1;9;16\right\}\)
a: Ta có: \(A=\dfrac{x}{x-4}+\dfrac{1}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\)
\(=\dfrac{x+\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)
b: Thay x=36 vào A, ta được:
\(A=\dfrac{6}{6-2}=\dfrac{6}{4}=\dfrac{3}{2}\)
c: Để \(A=-\dfrac{1}{3}\) thì \(3\sqrt{x}=-\sqrt{x}+2\)
\(\Leftrightarrow4\sqrt{x}=2\)
hay \(x=\dfrac{1}{4}\)
d: Để A>0 thì \(\sqrt{x}-2>0\)
hay x>4
e: Để A nguyên thì \(\sqrt{x}⋮\sqrt{x}-2\)
\(\Leftrightarrow\sqrt{x}-2\in\left\{-1;1;2;-2\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{1;3;4;0\right\}\)
hay \(x\in\left\{1;9;16;0\right\}\)
Tìm \(x\in Z\) để \(A=\dfrac{\sqrt{x}+3}{\sqrt{x}-3}\in Z-\)
a/ Cho M=\(\dfrac{\sqrt{x}-1}{2}\). Tìm x ∈ Z để M ∈ Z biết x<50
b/ Cho N=\(\dfrac{9}{\sqrt{x}-5}\). Tìm x ∈ Z để N ∈ Z
\(a,x< 50\Leftrightarrow\sqrt{x}-1< 5\sqrt{2}-1\\ M=\dfrac{\sqrt{x}-1}{2}\in Z\\ \Leftrightarrow\sqrt{x}-1\in B\left(2\right)=\left\{0;2;4;6\right\}\\ \Leftrightarrow\sqrt{x}\in\left\{1;3;5;7\right\}\\ \Leftrightarrow x\in\left\{1;9;25;49\right\}\\ b,\Leftrightarrow\sqrt{x}-5\inƯ\left(9\right)=\left\{-3;-1;1;3;9\right\}\left(\sqrt{x}-5>-5\right)\\ \Leftrightarrow\sqrt{x}\in\left\{2;4;6;8;14\right\}\\ \Leftrightarrow x\in\left\{4;16;36;64;196\right\}\)
p=\(\left(\dfrac{x+2}{x^2-5x+6}-\dfrac{x+3}{2-x}-\dfrac{x+2}{x-3}\right):\left(2x+5+\dfrac{9}{x-3}\right)\)
a,rút gọn
b,tìm x ∈ z để p ∈ z
a: \(P=\left(\dfrac{x+2}{\left(x-2\right)\left(x-3\right)}+\dfrac{x+3}{x-2}-\dfrac{x+2}{x-3}\right):\dfrac{\left(2x+5\right)\left(x-3\right)+9}{x-3}\)
\(=\dfrac{x+2+\left(x+3\right)\left(x-3\right)-\left(x+2\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}\cdot\dfrac{x-3}{2x^2-6x+5x-15+9}\)
\(=\dfrac{x+2+x^2-9-x^2+4}{\left(x-2\right)}\cdot\dfrac{1}{2x^2-x-6}\)
\(=\dfrac{x-3}{x-2}\cdot\dfrac{1}{2x^2-4x+3x-6}\)
\(=\dfrac{x-3}{x-2}\cdot\dfrac{1}{\left(x-2\right)\left(2x+3\right)}\)
\(=\dfrac{x-3}{\left(x-2\right)^2\left(2x+3\right)}\)
Tìm ∀x ϵ Z để A = \(\dfrac{2x-1}{3-x}\) ϵ Z
bn cho mình gửi sắp đến thi học kì 2 rồi. đây là những món quà mà bn sẽ nhận đc:
1: áo quần
2: tiền
3: đc nhiều người yêu quý
4: may mắn cả
5: luôn vui vẻ trong cuộc sống
6: đc crush thích thầm
7: học giỏi
8: trở nên xinh đẹp
phật sẽ ban cho bn những điều này nếu cậu gửi tin nhắn này cho 25 người, sau 3 ngày bn sẽ có những đc điều đó. nếu bn ko gửi tin nhắn này cho 25 người thì bn sẽ luôn gặp xui xẻo, học kì 2 bn sẽ là học sinh yếu và bạn bè xa lánh( lời nguyền sẽ bắt đầu từ khi đọc) ( mình
cũng bị ép);-;
Lời giải:
Điều kiện: $x\neq 3$
Để $A=\frac{2(x-3)+5}{3-x}=-2+\frac{5}{3-x}$ nguyên thì $\frac{5}{3-x}$ nguyên.
Với $x$ nguyên thì điều này xảy ra khi $3-x$ là ước của $5$
$\Rightarrow 3-x\in\left\{\pm 1; \pm 5\right\}$
$\Rightarrow x\in\left\{4; 2; 8; -2\right\}$ (thỏa mãn)
Cho A = \(\left(\dfrac{x-5\sqrt{x}}{x-25}-1\right):\left(\dfrac{25-x}{x+2\sqrt{x}-15}-\dfrac{\sqrt{x}+3}{\sqrt{x}+5}+\dfrac{\sqrt{x}-5}{\sqrt{x}-3}\right)\)
a ) Rút gọn A
b) Tìm x ϵ Z để A ϵ Z
a) Ta có: \(A=\left(\dfrac{x-5\sqrt{x}}{x-25}-1\right):\left(\dfrac{25-x}{x+2\sqrt{x}-15}-\dfrac{\sqrt{x}+3}{\sqrt{x}+5}+\dfrac{\sqrt{x}-5}{\sqrt{x}-3}\right)\)
\(=\left(\dfrac{\sqrt{x}\left(\sqrt{x}-5\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}-1\right):\left(\dfrac{25-x}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}-\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}+\dfrac{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}\right)\)
\(=\left(\dfrac{\sqrt{x}}{\sqrt{x}+5}-1\right):\left(\dfrac{25-x-\left(x-9\right)+x-25}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}\right)\)
\(=\left(\dfrac{\sqrt{x}}{\sqrt{x}+5}-\dfrac{\sqrt{x}+5}{\sqrt{x}+5}\right):\left(\dfrac{25-x-x+9+x-25}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}\right)\)
\(=\dfrac{\sqrt{x}-\sqrt{x}-5}{\sqrt{x}+5}:\dfrac{x+9}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{-5}{\sqrt{x}+5}\cdot\dfrac{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}{x+9}\)
\(=\dfrac{-5\left(\sqrt{x}-3\right)}{x+9}\)
câu 1 tìm A biết
\(A=\dfrac{a}{b+c}=\dfrac{c}{a+b}=\dfrac{b}{a+c}\)
câu 2
x∈Z để A∈Z
\(A=\dfrac{x+3}{x-2}\)
\(A=\dfrac{1-2x}{x+3}\)
nếu ai giải được mình cho 1 like
1
Áp dụng tính chất dãy tỉ số bằng nhau
`=>a/(b+c)=c/(a+b)=b/(a+c)=(a+b+c)/(2a+2b+2c)=1/2`
`=>b+c=2a`
`=>a+b+c=3a`
Hoàn toàn tương tự:
`a+b+c=3b`
`a+b+c=3c`
`=>a=b=c`
`=>A=1/2+1/2+1/2=3/2`
2
`A in Z`
`=>x+3 vdots x-2`
`=>x-2+5 vdots x-2`
`=>5 vdots x-2`
`=>x-2 in Ư(5)={1,-1,5,-5}`
`+)x-2=1=>x=3(TM)`
`+)x-2=-1=>x=1(TM)`
`+)x-2=5=>x=7(TM)`
`+)x-2=-5=>x=-3(TM)`
Vậy với `x in {1,3,-3,7}` thì `A in Z`
`A in Z`
`=>1-2x vdots x+3`
`=>-2(x+3)+1+6 vdots x+3`
`=>7 vdots x+3`
`=>x+3 in Ư(7)={1,-1,7,-7}`
`+)x+3=1=>x=-2(TM)`
`+)x+3=-1=>x=-4(TM)`
`+)x+3=-7=>x=-10(TM)`
`+)x+3=7=>x=4(TM)`
Vậy `x in {2,-4,4,10}` thì `A in Z`
Câu 2:
a) Để A nguyên thì \(x+3⋮x-2\)
\(\Leftrightarrow x-2+5⋮x-2\)
mà \(x-2⋮x-2\)
nên \(5⋮x-2\)
\(\Leftrightarrow x-2\inƯ\left(5\right)\)
\(\Leftrightarrow x-2\in\left\{1;-1;5;-5\right\}\)
hay \(x\in\left\{3;1;7;-3\right\}\)
Vậy: \(x\in\left\{3;1;7;-3\right\}\)
A= \(\left(\dfrac{2-3x}{x^2+2x-3}-\dfrac{x+3}{1-x}-\dfrac{x-1}{x+3}\right):\dfrac{3x+12}{x^3-1}\)
a/ rút gọn A
b/ tìm x thuộc Z để A nguyên
c/ tính A vs x = -2, x = -3
d/ tìm x để A = 1