Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Khổng Minh Ái Châu
Xem chi tiết
Dang Tung
2 tháng 10 2023 lúc 19:55

Nhận xét : ( x + y - 3 )^2018 >=0 và 2018.(2x-4)^2020 >= 0

=> (x+y-3)^2018 + 2018.(2x-4)^2020 >=0 

Dấu = xảy ra khi : x + y - 3 = 0 và 2x - 4 = 0 => x = 2 và y = 1

Thay vào bt S :

S = ( 2 - 1)^2019 + (2-1)^2019

= 1^2019 + 1^2019 = 2

Khổng Minh Ái Châu
2 tháng 10 2023 lúc 20:17

em cảm ơn

 

Nhàn Đinh
Xem chi tiết
NHK
16 tháng 10 2019 lúc 20:29

ta có x2+2y+1+y2+2z+1+z2+2x+1=0

=>(x2+2x+1)+(y2+2y+1)+(z2+2z+1)=0

=>(x+1)2+(y+1)2+(z+1)2=0

Vì (x+1)2> hoặc = 0

.......

=> x=-1,y=-1,z=-1

sau đó thay vào nha

nguyen ngoc son
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 1 2021 lúc 21:51

Ta có: \(3x^2+3y^2+4xy+2x-2y+2=0\)

\(\Leftrightarrow x^2+2x+1+y^2-2y+1+2x^2+4xy+2y^2=0\)

\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2+2\left(x^2+2xy+y^2\right)=0\)

\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2+2\left(x+y\right)^2=0\)

Ta có: \(\left(x+1\right)^2\ge0\forall x\)

\(\left(y-1\right)^2\ge0\forall y\)

\(2\left(x+y\right)^2\ge0\forall x,y\)

Do đó: \(\left(x+1\right)^2+\left(y-1\right)^2+2\left(x+y\right)^2\ge0\forall x,y\)

Dấu '=' xảy ra khi 

\(\left\{{}\begin{matrix}x+1=0\\y-1=0\\x+y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\\-1+1=0\left(đúng\right)\end{matrix}\right.\)

Thay x=-1 và y=1 vào biểu thức \(M=\left(x+y\right)^{2016}+\left(x+2\right)^{2017}+\left(y-1\right)^{2018}\), ta được: 

\(M=\left(-1+1\right)^{2016}+\left(-1+2\right)^{2017}+\left(1-1\right)^{2018}\)

\(=0^{2016}+1^{2017}+0^{2018}=1\)

Vậy: M=1

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
13 tháng 9 2017 lúc 7:11

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 1 2017 lúc 9:39

Đáp án C

Đặt

log 9 x = log 12 y = log 16 x + y = t ⇒ x = 9 t y = 12 t x + y = 16 t ⇒ 9 t + 12 t = 16 t

⇔ 3 t 2 + 3 t .4 t − 4 t 2 = 0    *

Chia cả hai vế của phương trình (*) cho 4 t 2  ta được:

3 t 4 t 2 + 3 t 4 t − 1 = 0 ⇔ 3 t 4 t = 5 − 1 2 3 t 4 t = − 5 − 1 2 L ⇒ x y = 3 t 4 t = 5 − 1 2

Ta có:

S = log 4 x 1 + 5 y + log 8 x 1 + 5 y + log 16 x 1 + 5 y 3 + ... + log 2 2018 x 1 + 5 y 2017

 

= log 2 2 x 1 + 5 y + log 2 3 x 1 + 5 y 1 2 + log 2 4 x 1 + 5 y 1 3 + ... + log 2 2018 x 1 + 5 y 1 2017

= 1 1.2 log 2 x 1 + 5 y + 1 2.3 log 2 x 1 + 5 y + 1 3.4 log 2 x 1 + 5 y + ... + 1 2017.2018 log 2 x 1 + 5 y

= (   1 − 1 2 + 1 2 − 1 3 + 1 3 − 1 4 + ... + 1 2017 − 1 2018   ) . log 2 x 1 + 5 y

= 1 − 1 2018 . log 2 x 1 + 5 y = 2017 2018 . log 2 5 − 1 5 + 1 2 = 2017 2018

Trà My
Xem chi tiết
zZz Cool Kid_new zZz
8 tháng 12 2019 lúc 9:44

Áp dụng BĐT Cô si ta có:

\(x^3+8y^3+1\ge3\sqrt[3]{x^3\cdot8y^3\cdot1}=6xy\)

\(\Rightarrow x^3+8y^3+1-6xy\ge0\)

Dấu "=" xảy ra tại \(x=2y=1\Rightarrow x=1;y=\frac{1}{2}\)

Khi đó:

\(A=x^{2018}+\left(y-\frac{1}{2}\right)^{2019}=1^{2018}+0^{2019}=1\)

Khách vãng lai đã xóa
Hoàng Quốc Tuấn
Xem chi tiết
Linh Suzu
Xem chi tiết
Nguyễn Huy Tú
23 tháng 12 2016 lúc 21:32

Ta có:

\(\left|x-1\right|+\left(y+2\right)^{20}=0\)

\(\Rightarrow\left|x-1\right|=0\)\(\left(y+2\right)^{20}=0\)

+) \(\left|x-1\right|=0\Rightarrow x-1=0\Rightarrow x=1\)

+) \(\left(y+2\right)^{20}=0\Rightarrow y+2=0\Rightarrow y=-2\)

\(\Rightarrow C=2x^5-5y^3+2015\)

\(=2.1^5-5.\left(-2\right)^3+2015\)

\(=2-\left(-40\right)+2015\)

\(=2057\)

Vậy C = 2057

ONLINE SWORD ART
Xem chi tiết