Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thanh Tú Võ
Xem chi tiết
Thanh Tú Võ
Xem chi tiết
Yim Yim
Xem chi tiết
Như Dương
Xem chi tiết
Hồng Phúc
31 tháng 8 2021 lúc 8:57

a, ĐK: \(x\ge2\)

\(\sqrt{2x+1}-\sqrt{x-2}=x+3\)

\(\Leftrightarrow\dfrac{x+3}{\sqrt{2x+1}+\sqrt{x-2}}=x+3\)

\(\Leftrightarrow\left(x+3\right)\left(\dfrac{1}{\sqrt{2x+1}+\sqrt{x-2}}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\left(l\right)\\\sqrt{2x+1}+\sqrt{x-2}=1\left(vn\right)\end{matrix}\right.\)

Phương trình vô nghiệm.

 

Hồng Phúc
31 tháng 8 2021 lúc 9:02

b, ĐK: \(x\ge-1\)

\(\sqrt{x+3}+2x\sqrt{x+1}=2x+\sqrt{x^2+4x+3}\)

\(\Leftrightarrow\sqrt{x+3}+2x\sqrt{x+1}=2x+\sqrt{\left(x+3\right)\left(x+1\right)}\)

\(\Leftrightarrow-\sqrt{x+3}\left(\sqrt{x+1}-1\right)+2x\left(\sqrt{x+1}-1\right)=0\)

\(\Leftrightarrow\left(2x-\sqrt{x+3}\right)\left(\sqrt{x+1}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+3}=2x\\\sqrt{x+1}=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge0\\x+3=4x^2\end{matrix}\right.\\x=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\x=0\left(tm\right)\end{matrix}\right.\)

Hồng Phúc
31 tháng 8 2021 lúc 9:13

c, ĐK: \(x\ge-3\)

\(2\sqrt{x+3}=9x^2-x-4\)

\(\Leftrightarrow x+3+2\sqrt{x+3}+1=9x^2\)

\(\Leftrightarrow\left(\sqrt{x+3}+1\right)^2=9x^2\)

\(\Leftrightarrow\left(\sqrt{x+3}+1-3x\right)\left(\sqrt{x+3}+1+3x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+3}=3x-1\\\sqrt{x+3}=-3x-1\end{matrix}\right.\)

TH1: \(\left\{{}\begin{matrix}3x-1\ge0\\x+3=9x^2-6x+1\end{matrix}\right.\Leftrightarrow...\)

TH2: \(\left\{{}\begin{matrix}-3x-1\ge0\\x+3=9x^2+6x+1\end{matrix}\right.\Leftrightarrow...\)

Tự giải nha, t kh có máy tính ở đây.

Xem chi tiết
Đặng Ngọc Quỳnh
29 tháng 10 2020 lúc 12:43

a) \(\text{Đ}K\text{X}\text{Đ}:\frac{3}{2}\le x\le\frac{5}{2}\)

Áp dụng BĐT Bunhiacopxki ta có:

\(VT=\sqrt{2x-3}+\sqrt{5-2x}\le\sqrt{2\left(2x-3+5-2x\right)}=2\)

Dấu '=' xảy ra khi \(\sqrt{2x-3}=\sqrt{5-2x}\Leftrightarrow x=2\)

Lại có: \(VP=3x^2-12x+14=3\left(x-2\right)^2+2\ge2\)

Dấu '=' xảy ra khi x=2

Do đó VT=VP khi x=2

Khách vãng lai đã xóa
Đặng Ngọc Quỳnh
29 tháng 10 2020 lúc 12:50

b) ĐK: \(x\ge0\). Ta thấy x=0 k pk là nghiệm của pt, chia 2 vế cho x ta có:

\(x^2-2x-x\sqrt{x}-2\sqrt{x}+4=0\Leftrightarrow x-2-\sqrt{x}-\frac{2}{\sqrt{x}}+\frac{4}{x}=0\)

\(\Leftrightarrow\left(x+\frac{4}{x}\right)-\left(\sqrt{x}+\frac{2}{\sqrt{x}}\right)-2=0\)

Đặt \(\sqrt{x}+\frac{2}{\sqrt{x}}=t>0\Leftrightarrow t^2=x+4+\frac{4}{x}\Leftrightarrow x+\frac{4}{x}=t^2-4\), thay vào ta có:

\(\left(t^2-4\right)-t-2=0\Leftrightarrow t^2-t-6=0\Leftrightarrow\left(t-3\right)\left(t+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t=3\\t=-2\end{cases}}\)

Đối chiếu ĐK  của t

\(\Rightarrow t=3\Leftrightarrow\sqrt{x}+\frac{2}{\sqrt{x}}=3\Leftrightarrow x-3\sqrt{x}+2=0\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=1\end{cases}}\)

Khách vãng lai đã xóa
Đặng Ngọc Quỳnh
29 tháng 10 2020 lúc 12:53

c) Đặt \(y=\sqrt{x^2+7x+7};y\ge0\)

Pt có dạng: \(3y^2+2y-5=0\Leftrightarrow\orbr{\begin{cases}y=\frac{-5}{3}\\y=1\end{cases}\Leftrightarrow y=1}\)

Với y=1\(\Leftrightarrow\sqrt{x^2+7x+7}=1\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-6\end{cases}}\)

Khách vãng lai đã xóa
Nguyễn Đỗ Thục Quyên
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 8 2021 lúc 13:06

c: Ta có: \(\sqrt{2x}=\sqrt{5}\)

\(\Leftrightarrow2x=5\)

hay \(x=\dfrac{5}{2}\)

d: Ta có: \(\sqrt{3x-1}=4\)

\(\Leftrightarrow3x-1=16\)

\(\Leftrightarrow3x=17\)

hay \(x=\dfrac{17}{3}\)

Nguyễn Lê Phước Thịnh
14 tháng 8 2021 lúc 13:57

Ta có: \(\sqrt{4\cdot\left(1-x\right)^2}=6\)

\(\Leftrightarrow2\left|x-1\right|=6\)

\(\Leftrightarrow\left|x-1\right|=3\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=3\\x-1=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-2\end{matrix}\right.\)

Nguyễn Lê Phước Thịnh
14 tháng 8 2021 lúc 13:57

Ta có: \(\sqrt{4x^2-4x+9}=3\)

\(\Leftrightarrow4x^2-4x=0\)

\(\Leftrightarrow4x\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

Lê Đức Anh
Xem chi tiết
alibaba nguyễn
17 tháng 9 2019 lúc 9:06

Đặt \(\hept{\begin{cases}\sqrt{2\left(x^2-4x-5\right)}=a\\\sqrt{x+4}=b\end{cases}}\)

\(\Rightarrow2x^2-5x+2=4\sqrt{2\left(x^3-21x-20\right)}\)

\(\Leftrightarrow2\left(x^2-4x-5\right)+3\left(x+4\right)=4\sqrt{2\left(x^2-4x-5\right)\left(x+4\right)}\)

\(\Leftrightarrow a^2+3b^2=4ab\)

\(\Leftrightarrow\left(a-b\right)\left(a-3b\right)=0\)

Lê Đức Anh
17 tháng 9 2019 lúc 20:43

E cảm ơn

callme_lee06
Xem chi tiết
Nguyễn Thị Bích Thuỳ
Xem chi tiết