chứng minh bất đẳng thức sau:
\(\frac{a}{b}+\frac{b}{a}\ge2(a,b>0)\)
giúp vs nhoa!!!
chứng minh bất dẳng thức sau:
\(\frac{a}{b}+\frac{b}{2}\ge2\)
các bạn lm ơn giúp minh vs
phải có điều kiện nữa chứ
hình như sai đề goy
chắc là (a/b)+(b/a)>= 2 đó bn
Chứng minh bất đẳng thức sau với các số dương a,b,c:
\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}+\frac{4abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge2\)
Học sinh trên OLM đúng là dốt, chẳng ai làm được bài này....
ho các số dương a,b,c .Chứng minh rằng bất đẳng thức
\(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+d}}+\sqrt{\frac{c}{d+a}}+\sqrt{\frac{d}{a+b}}\)\(\ge2\)
chứng minh bất đẳng thức:
a, \(\frac{a+8}{\sqrt{a-1}}\ge6\) với a > 1
b, \(\frac{a^2+2}{\sqrt{a^2+1}}\ge2\) với mọi a
giúp mình vs nhé
a,Có \(\frac{a+8}{\sqrt{a-1}}\ge6\) (a>1) (1)
<=> \(a+8\ge6\sqrt{a-1}\)
<=> \(a^2+16a+64\ge36a-36\)
<=> \(a^2-20a+100\ge0\)
<=> \(\left(a-10\right)^2\ge0\)(luôn đúng với mọi a)
Dấu "="xảy ra <=> a=10
=> (1) đc CM
b, Áp dụng bđt cosi với hai số dương có
\(\sqrt{a^2+1}\le\frac{a^2+1+1}{2}=\frac{a^2+2}{2}\)
=> \(\frac{a^2+2}{\sqrt{a^2+1}}\ge\frac{a^2+2}{\frac{a^2+2}{2}}=\frac{2\left(a^2+2\right)}{a^2+2}=2\)
Dấu "=" xảy ra <=> a=0
Chứng minh bất đẳng thức nesbitt
Nếu a,b,c là các số dương ta có \(P=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{b+a}\ge\frac{3}{2}\)
Chứng minh giúp em dễ hiểu vs ạ
C3
Đặt \(S=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)
\(M=\frac{b}{b+c}+\frac{c}{c+a}+\frac{a}{a+b}\)
\(N=\frac{c}{b+c}+\frac{a}{c+a}+\frac{b}{a+b}\)
Ta có : \(M+N=\left(\frac{b}{b+c}+\frac{c}{c+a}+\frac{a}{a+b}\right)+\left(\frac{c}{b+c}+\frac{a}{c+a}+\frac{b}{a+b}\right)\)
\(=\left(\frac{b}{b+c}+\frac{c}{b+c}\right)+\left(\frac{c}{c+a}+\frac{a}{c+a}\right)+\left(\frac{a}{a+b}+\frac{b}{a+b}\right)\)
\(=\frac{b+c}{b+c}+\frac{c+a}{c+a}+\frac{a+b}{a+b}=1+1+1=3\)
Ta có :\(+)M+S=\frac{b}{b+c}+\frac{c}{c+a}+\frac{a}{a+b}+\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
\(=\frac{b+a}{b+c}+\frac{c+b}{c+a}+\frac{a+c}{b+a}\)
Hoàn toàn tương tự :\(+)N+S=\frac{a+c}{b+c}+\frac{b+a}{c+a}+\frac{b+c}{b+a}\)
Áp dụng Bất đẳng thức Cauchy cho 2 số không âm ta được :
\(\frac{b+a}{b+c}+\frac{c+b}{c+a}+\frac{a+c}{b+a}\ge3\sqrt[3]{\frac{\left(b+a\right)\left(c+b\right)\left(a+c\right)}{\left(b+c\right)\left(c+a\right)\left(b+a\right)}}=3\)
\(\frac{a+c}{b+c}+\frac{b+a}{c+a}+\frac{b+c}{b+a}\ge3\sqrt[3]{\frac{\left(a+c\right)\left(b+a\right)\left(b+c\right)}{\left(b+c\right)\left(c+a\right)\left(b+a\right)}}=3\)
Cộng theo vế các bất đẳng thức cùng chiều ta được :
\(M+N+2S\ge3+3=6\)
\(< =>3+2S\ge6< =>2S\ge6-3=3< =>S\ge\frac{2}{3}\)
Vậy ta có điều phải chứng minh
\(P=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{b+a}=\frac{a+b+c}{b+c}+\frac{a+b+c}{a+c}+\frac{a+b+c}{a+b}-3\)
\(=\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\right)-3\)
\(\ge\left(a+b+c\right)\frac{9}{b+c+a+c+a+b}-3\)
\(=\frac{9}{2}-3=\frac{3}{2}\)
Dấu "=" xảy ra <=> a = b = c
Dùng bất đẳng thức Schwarz chứng minh bất đẳng thức sau:
\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\ge\frac{3}{2}\)
\(VT=\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)
\(=\dfrac{a^2}{ab+ca}+\dfrac{b^2}{ab+bc}+\dfrac{c^2}{ca+bc}\ge\left(Schwarz\right)\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\)
Mà theo Cô-si ta có:
\(\left\{{}\begin{matrix}a^2+b^2\ge2ab\\b^2+c^2\ge2bc\\c^2+a^2\ge2ca\end{matrix}\right.\Rightarrow a^2+b^2+c^2\ge ab+bc+ca\)
\(\Rightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\) (hằng đẳng thức)
\(\Rightarrow VT\ge\dfrac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ca\right)}=\dfrac{3}{2}\)
Dấu "=" xảy ra khi a=b=c
Đặt b + c = x ; c + a = y ; a + b = z
=> a = (y + z - x) / 2 ; b = (x + z - y) / 2 ; c = (x + y - z) / 2
=> P = a/b+c + b/c+a + c/a+b = (y + z - x) / 2x + (x + z - y) / 2y + (x + y - z) / 2z
= 1/2. (y/x + z/x - 1 + x/y + z/y - 1 + x/z + y/z - 1) = 1/2. (x/y + y/x + x/z + z/x + y/z + z/y - 3)
Áp dụng BĐT A/B + B/A ≥ 0 hoặc Cô-si cũng được
=> P ≥ 1/2. (2 + 2 + 2 - 3) = 3/2 (đpcm)
Dấu = xảy ra <=> x = y = z <=> b+c = c+a = a+b <=> a = b = c
Chứng minh bất đẳng thức sau:
C = \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\left(a,b,c>0\right)\)
\(C=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)
\(\Leftrightarrow\frac{a}{b+c}+1+\frac{b}{c+a}+1+\frac{c}{a+b}+1\ge\frac{3}{2}+1+1+1\)
\(\Leftrightarrow\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}+\frac{a+b+c}{a+b}\ge\frac{9}{2}\)
\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\ge\frac{9}{2}\)
\(\Leftrightarrow2\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\ge9\)
\(\Leftrightarrow\left[\left(b+c\right)+\left(c+a\right)+\left(a+b\right)\right]\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\ge9\left(^∗\right)\)
Áp dụng bđt Cauchy :
\(\hept{\begin{cases}\left(b+c\right)+\left(c+a\right)+\left(a+b\right)\ge3\sqrt[3]{\left(b+c\right)\left(c+a\right)\left(a+b\right)}\\\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\ge3\sqrt[3]{\frac{1}{\left(b+c\right)\left(c+a\right)\left(a+b\right)}}\end{cases}}\)
Nhân vế của các bđt ta được :
\(VT\left(^∗\right)\ge3\sqrt[3]{\left(b+c\right)\left(c+a\right)\left(a+b\right)}\cdot3\sqrt[3]{\frac{1}{\left(b+c\right)\left(c+a\right)\left(a+b\right)}}=9\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)
đặt b + c = x ; c + a = y ; a + b = z
\(\Rightarrow\)a + b + c = \(\frac{x+y+z}{2}\)
\(\Rightarrow a=\frac{y+z-x}{2};b=\frac{x+z-y}{2};c=\frac{x+y-z}{2}\)
\(\Rightarrow C=\frac{y+z-x}{2x}+\frac{x+z-y}{2y}+\frac{x+y-z}{2z}\)
\(C=\frac{1}{2}.\left(\frac{y}{x}+\frac{z}{x}+\frac{x}{y}+\frac{z}{y}+\frac{x}{z}+\frac{y}{z}-3\right)\ge\frac{1}{2}\left(6-3\right)=\frac{3}{2}\)
Tham khảo lời giải của mình tại đây nhé (không như cách thông thường đâu): Câu hỏi của Namek kian - Toán lớp 9
Dùng bất đẳng thức Schwarz chứng minh bất đẳng thức sau:
\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\ge\frac{3}{2}\)
\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)
\(=\frac{a^2}{ab+ac}+\frac{b^2}{ab+bc}+\frac{c^2}{ac+bc}\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\frac{a^2}{ab+ac}+\frac{b^2}{ab+bc}+\frac{c^2}{ac+bc}\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\)
Ta c/m BĐT phụ: \(ab+bc+ca\le\frac{1}{3}\left(a+b+c\right)^2\)( b tự c/m nhé. Chuyển vế, c/m VP>=0 là xong )
\(\Rightarrow\frac{a^2}{ab+ac}+\frac{b^2}{ab+bc}+\frac{c^2}{ac+bc}\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\ge\frac{\left(a+b+c\right)^2}{2.\frac{1}{3}\left(a+b+c\right)^2}=\frac{1}{\frac{2}{3}}=\frac{3}{2}\)
\(\Leftrightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)
đpcm
\(ab+bc+ca\le\frac{1}{3}.\left(a+b+c\right)^2\)
\(\Leftrightarrow3.\left(ab+bc+ca\right)\le\left(a+b+c\right)^2\)
\(\Leftrightarrow3.\left(ab+bc+ca\right)\le a^2+b^2+c^2+2\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)( BĐT luôn đúng)
\(\Rightarrow ab+bc+ca\le\frac{1}{3}.\left(a+b+c\right)^2\)
đpcm
Cho a,b,c lần lượt là các cạnh và nữa chu vi một tam giác. CHứng Minh bất đẳng thức
\(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
ta sử dụng bđt \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)(cái này bạn có thể dễ dàng chúng minh )
ta có
\(\frac{1}{p-a}+\frac{1}{p-b}\ge\frac{4}{p-a+p-b}=\frac{4}{2p-\left(a+b\right)}=\frac{4}{c}\)(1)
tương tự ta có
\(\frac{1}{p-b}+\frac{1}{p-c}\ge\frac{4}{a}\) (2)
\(\frac{1}{p-c}+\frac{1}{p-a}\ge\frac{4}{b}\)(3)
cộng theo vế của bđt (1);(2);(3) ta có
\(2\left(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\right)\ge4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
hay \(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)