Cho tam giác ABC vuông ở A . Trên cạnh BC lấy điểm D sao cho BD = BA . Gọi H là trung điểm của AD . Tia BH cắt AC ở E . Trên tia đối của tia HB láy điểm K sao cho HK = HB . Chứng minh KD vuông góc với AC
Cho tam giác ABC vuông ở A . Trên cạnh BC lấy điểm D sao cho BD = BA . Gọi H là trung điểm của AD . Tia BH cắt AC ở E . Trên tia đối của tia HB láy điểm K sao cho HK = HB . Chứng minh KD vuông góc với AC
Cho tam giác ABC vuông tại A (AC > AB) đường cao AH (H ∈ BC).Trên tia đối của tia HB lấy điểm D sao cho HB = HD. Kẻ DE vuông góc với AC tại E và HK vuông góc với AC tại K. Gọi M là trung điểm của DC. Chứng minh góc HEM vuông
1.Cho tam giác có góc A = 60 độ và AB<AC . Trên cạnh AC lấy điểm D sao cho AD=AB. Tia phân giác của góc A cắt BC ở E
a.Chứng minh tam giác ABE = tam giác ADE
b.AE cắt BD tại I .Chứng minh I là trung điểm của BD
c.Trên tia AI lấy điểm H sao cho IA=IH. Chứng minh AB song song với HD
d.Tính số đo góc ABD
2.Cho tam giác ABC vuông tại A có góc B = 2 Góc C
a.Tính số đo của góc B và C của Tam giác ABC
b.Kẻ AH vuông góc với BC ( H thuộc BC) .Trên tia HC lấy D sao cho H là trung điểm của BD .Chứng minh Tam giác ABH= tam giác AHD
c.Chứng minh AD= Cd
d.TRên tia đối của HA lấy K sao cho HK= HA. Chứng minh KD là đường trung trực của AC.
3.Cho tam giác ABC có góc A= 90 độ ( AB<AC) kẻ AH vuông góc với BC ,. Trên Bc lấy I sao cho HI=HB. Trên tia đối của HA lấy K sao cho HK=HA
a.chứng minh tam giác ABH=tam giác KIH
b.Chứng minh AB song song với KI
c.Vẽ IE vuông góc với AC tại E . Chứng minh K, I,E thẳng hàng
Giải giúp mình với các bạn . Mình cần rất gấp . Mai phải nộp rồi
Thanks nhiều nghen
xét tam giác ABE và tam giác ADE
AE chung
góc BAE = góc DAE(AE la tia phân giác của góc E)
AB = AD ( gt)
=> tam giác ABE = tam giac DAE ( c.g.c)
b) xét tam giác ABI và tam giác ADI
AI chung
góc BAE = góc DAE
tam giác ABI=tam giác ADI
=> BI = DI ( 2 cạnh t/ứ )
=> I là trung điểm của BD
Cho tam giác ABC vuông tại A. Gọi H là trung điểm của cạnh AC. Trên tia đối của tia HB lấy điểm K sao cho HK=HB. Chứng minh:
a) Tam giác ABH= tam giác CKH
b) KC vuông góc với AC
c) AK song song với BC
Cho tam giác ABC vuông ở A . Trên cạnh BC lấy điểm D sao cho BD = BA.Gọi H là trung điểm của AD . Tia BH cắt AC ở E.Trên tia đối của tia AB lấy điểm K sao cho HK = HB . Chứng minh KD vuông góc với AC
KD ko vuông góc với AC mà bn
Bài 1:Cho tam giác ABC vuông tại A có góc B bằng 60 độ . Vẽ AH vuông
góc với BC tại H. Trên cạnh AC lấy điểm D sao cho AD = AH. Gọi I là trung điểm
của cạnh HD.
a) Chứng minh: Tam giác AHI= tam giácADI. Từ đó suy ra AI vuông góc HD
b) Tia AI cắt cạnh HC tại điểm K. Chứng minh tam giác AHK= tam giác ADK từ đó suy
ra AB // KD.
c) Trên tia đối của tia HA lấy điểm E sao cho HE = AH. Chứng minh HB =
HK và ba điểm D, K, E thẳng hàng.
Mn giúp vs ạ
Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Kẻ BH vuông góc với AD tại H, CK vuông góc với AE tại K. Hai đường thẳng HB và KC cắt nhau tại I. Chứng minh rằng:
a) Tam giác ADE cân.
b) Tam giác BIC cân.
c) IA là tia phân giác của góc BIC
a) Xét \(\Delta ADB\) và \(\Delta AEC\) có:
\(AB=AC\) (do \(\Delta ABC\) cân tại \(A\))
\(\widehat{ABD}=\widehat{ACE}\)
\(BD=CE\) (giả thiết)
\(\Rightarrow\Delta ADB=\Delta AEC\left(c.g.c\right)\)
\(\Rightarrow AD=AE\) (\(2\) cạnh tương ứng)
\(\Rightarrow\Delta ADE\) cân tại \(A\)
b) Vì \(\Delta ADE\) cân tại \(A\)
\(\Rightarrow\widehat{ADB}=\widehat{ACE}\) (\(2\) góc tương ứng)
Ta có: \(\left\{{}\begin{matrix}\widehat{ADB}+\widehat{HBD}=90^o\\\widehat{ACE}+\widehat{KCE}=90^o\end{matrix}\right.\) (\(2\) góc phụ nhau)
Từ hai điều trên \(\Rightarrow\widehat{HBD}=\widehat{KCE}\)
Mà \(\left\{{}\begin{matrix}\widehat{HBD}=\widehat{CBI}\\\widehat{KCE}=\widehat{BCI}\end{matrix}\right.\) (\(2\) góc đối đỉnh)
Từ đó \(\Rightarrow\widehat{CBI}=\widehat{BCI}\)
\(\Rightarrow\Delta BIC\) cân tại \(I\)
c) Xét \(\Delta ABI\) và \(\Delta ACI\) có:
\(AB=AC\) (giả thiết)
\(BI=CI\) (do \(\Delta BIC\) cân tại \(I\))
\(AI\) là cạnh chung
\(\Rightarrow\Delta ABI=\Delta ACI\left(c.c.c\right)\)
\(\Rightarrow\widehat{AIB}=\widehat{AIC}\) (\(2\) góc tương ứng)
\(\Rightarrow AI\) là tia phân giác \(\widehat{BIC}\)
Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Kẻ BH vuông góc với AD tại H, CK vuông góc với AE tại K. Hai đường thẳng HB và KC cắt nhau tại I. Chứng minh rằng:
a) Tam giác ADE cân.
b) Tam giác BIC cân.
c) IA là tia phân giác của góc BIC.
a; Xét ΔABD và ΔACE có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
Do đó: ΔABD=ΔACE
Suy ra: AD=AE
hay ΔADE cân tại A
b: Xét ΔHBD vuông tại H và ΔKCE vuông tại K có
BD=CE
\(\widehat{D}=\widehat{E}\)
Do đó: ΔHBD=ΔKCE
Suy ra: \(\widehat{HBD}=\widehat{KCE}\)
hay \(\widehat{IBC}=\widehat{ICB}\)
hay ΔIBC cân tại I
Cho tam giác ABC với AB < BC , kẻ AH vuông góc với BC . Trên tia đối của tia HB lấy điểm K sao cho HK = HB .
a. CM : Tam giác ABH = Tam giác AKH
b. Gọi M là trung điểm cạnh AC . Trên tia đối của tia MK lấy điểm E sao cho ME = MK . Chứng minh : EC = AB
c. CM : AE // BC
Ta có hình vẽ:
a) Xét Δ ABH và Δ AKH có:
BH = KH (gt)
AHB = AHK = 90o
AH là cạnh chung
Do đó, Δ ABH = Δ AKH (c.g.c) (đpcm)
b) Xét Δ AMK và Δ CME có:
MK = ME (gt)
AMK = CME (đối đỉnh)
AM = CM (gt)
Do đó, Δ AMK = Δ CME (c.g.c)
=> AK = EC (2 cạnh tương ứng) (1)
Δ ABH = Δ AKH (câu a)
=> AB = AK (2 cạnh tương ứng) (2)
Từ (1) và (2) => EC = AB (đpcm)
c) Xét Δ AME và Δ CMK có:
AM = CM (gt)
AME = CMK (đối đỉnh)
ME = MK (gt)
Do đó Δ AME = Δ CMK (c.g.c)
=> AEM = CKM (2 góc tương ứng)
Mà AEM và CKM là 2 góc so le trong nên AE // KC hay AE // BC (đpcm)
Giải:
a) Xét \(\Delta ABH,\Delta AKH\) có:
\(BH=HK\left(gt\right)\)
\(\widehat{AHB}=\widehat{AHK}\)
AH: cạnh chung
\(\Rightarrow\Delta ABH=\Delta AKH\left(c-g-c\right)\)
b) Vì \(\Delta ABH=\Delta AKH\)
\(\Rightarrow AB=AK\) ( cạnh tương ứng ) (1)
Xét \(\Delta AMK,\Delta CME\) có:
\(AM=MC\left(=\frac{1}{2}AC\right)\)
\(\widehat{M_1}=\widehat{M_2}\) ( đối đỉnh )
\(EM=KM\left(gt\right)\)
\(\Rightarrow\Delta AMK=\Delta CME\left(c-g-c\right)\)
\(\Rightarrow EC=AK\) ( cạnh tương ứng ) (2)
Từ (1) và (2) \(\Rightarrow EC=AB\left(=AK\right)\)
c) Xét \(\Delta AME\) và \(\Delta CMK\) có:
\(AM=MC\left(=\frac{1}{2}AC\right)\)
\(\widehat{M_3}=\widehat{M_4}\) ( đối đỉnh )
\(KM=EM\left(gt\right)\)
\(\Rightarrow\Delta AME=\Delta CMK\left(c-g-c\right)\)
\(\Rightarrow\widehat{E_1}=\widehat{K_1}\) ( góc tương ứng )
Mà \(\widehat{E_1}\) và \(\widehat{K_1}\) ở vị trí so le trong nên AE // KC hay AE // BC
Vậy a) \(\Delta ABH=\Delta AKH\)
b) EC = AB
c) AE // BC