Cho S=1+3+32+33+...+397+398.
a) Chứng minh rằng S chia hết cho 13.
b) Tính S.
Cho S = 1+3+32+33+......+398. Chứng minh rằng S chia hết cho 13.
Giúp em với ạ, em cảm ơn
\(S=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{96}\left(1+3+3^2\right)\)
\(=13+3^3.13+...+3^{96}.13=13\left(1+3^3+...+3^{96}\right)⋮13\)
Cho S = 1-3 + 32-33 +....+398-399 . Chứng minh rằng S chia hết cho 20 , giúp mk nhanh nha
S = (1 - 3 + 32 - 33) + 34 . (1 - 3 + 32 - 33) + .... + 396 . (1 - 3 + 32 - 33)
S = (-20) + 34 . (-20) +.... + 396 . (-20)
S = (-20) . (1 + 34 +...+ 396)
\(\Rightarrow\)S \(⋮\) 20
(Ko bt có đúng ko)
*KO CHÉP MẠNG*
Cho S = 1-3+32-33+...+398 - 399.
a) Chứng minh rằng : S là bội của -20.
b) Tính S, từ đó suy ra 3100 chia cho 4 dư 1.
a,
S = 1 - 3 + 32 - 33+...+398 - 399
S = 30 - 31 + 32 - 33+...+ 398 - 399
xét dãy số: 0; 1; 2; 3;...;99
Dãy số trên là dãy số cách đều với khoảng cách là: 1 - 0 = 1
Dãy số trên có số số hạng là: (99 - 0): 1 + 1 = 100 (số)
100 : 4 = 25
Vậy ta nhóm 4 số hạng liên tiếp của tổng S thành 1 nhóm thì:
S = ( 1 - 3 + 32 - 33) +....+( 396 - 397 + 398 - 399)
S = - 20+...+ 396.(1 - 3 + 32 - 33)
S = - 20 +...+ 396.(-20)
S = -20.( 30 + ...+ 396) (đpcm)
b,
S = 1 - 3 + 32 - 33+...+ 398 - 399
3S = 3 - 32 + 33-...-398 + 399 - 3100
3S + S = - 3100 + 1
4S = - 3100 + 1
S = ( -3100 + 1): 4
S = - ( 3100 - 1) : 4
Vì S là số nguyên nên 3100 - 1 ⋮ 4 ⇒ 3100 : 4 dư 1 (đpcm)
Bài 1. So sánh: \(2^{49}\) và \(5^{21}\)
Bài 2. a, Chứng minh rằng S = 1 + 3 + 32 + 33 + ... + 399 chia hết cho 40.
b, Cho S = 1 + 4 + 42 + 43 + ... + 462. Chứng minh rằng S chia hết cho 21.
Giúp mk với
Bài 1:
\(2^{49}=\left(2^7\right)^7=128^7;5^{21}=\left(5^3\right)^7=125^7\\ Vì:128^7>125^7\Rightarrow2^{49}>5^{21}\)
Bài 2:
\(a,S=1+3+3^2+3^3+...+3^{99}\\ =\left(1+3+3^2+3^3\right)+3^4.\left(1+3+3^2+3^3\right)+...+3^{96}.\left(1+3+3^2+3^3\right)\\ =40+3^4.40+...+3^{96}.40\\ =40.\left(1+3^4+...+3^{96}\right)⋮40\\ b,S=1+4+4^2+4^3+...+4^{62}\\ =\left(1+4+4^2\right)+4^3.\left(1+4+4^2\right)+...+4^{60}.\left(1+4+4^2\right)\\ =21+4^3.21+...+4^{60}.21\\ =21.\left(1+4^3+...+4^{60}\right)⋮21\)
Bài 1 :
\(2^{49}=\left(2^7\right)^7=128^7\)
\(5^{21}=\left(5^3\right)^7=125^7\)
mà \(125^7< 128^7\)
\(\Rightarrow2^{49}>5^{21}\)
Bài 2 :
a) \(S=1+3+3^2+3^3+...3^{99}\)
\(\Rightarrow S=\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)...+3^{96}\left(1+3+3^2+3^3\right)\)
\(\Rightarrow S=40+40.3^4+...+40.3^{96}\)
\(\Rightarrow S=40\left(1+3^4+...+3^{96}\right)⋮40\)
\(\Rightarrow dpcm\)
b) \(S=1+4+4^2+4^3+...4^{62}\)
\(\Rightarrow S=\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...4^{60}\left(1+4+4^2\right)\)
\(\Rightarrow S=21+4^3.21+...4^{60}.21\)
\(\Rightarrow S=21\left(1+4^3+...4^{60}\right)⋮21\)
\(\Rightarrow dpcm\)
Cho S = 1 + 3 + 32 + 33 + 34 + 35 + 36 + 37 + 38 + 39.Chứng tỏ rằng S chia hết cho 13.
\(S=\left(1+3+3^2\right)+...+3^7\left(1+3+3^2\right)\)
\(=13\left(1+...+3^7\right)⋮13\)
bài 1 :
a) so sánh A và B biết : A =229 và B=539
b) B = 31+32+33+34+...+32010 chia hết cho 4 và 13
c) tính A = 1-3+32-33+34-...+398-399+3100
bài 2 tìm cái số nguyên n thỏa mãn
a) tìm các số nguyên n sao cho 7 ⋮ (n+1)
b) tìm các số nguyên n sao cho (2n + 5 ) ⋮ (n+1)
Bài 1:
a. $2^{29}< 5^{29}< 5^{39}$
$\Rightarrow A< B$
b.
$B=(3^1+3^2)+(3^3+3^4)+(3^5+3^6)+...+(3^{2009}+3^{2010})$
$=3(1+3)+3^3(1+3)+3^5(1+3)+...+3^{2009}(1+3)$
$=(1+3)(3+3^3+3^5+...+3^{2009})$
$=4(3+3^3+3^5+...+3^{2009})\vdots 4$
Mặt khác:
$B=(3+3^2+3^3)+(3^4+3^5+3^6)+....+(3^{2008}+3^{2009}+3^{2010})$
$=3(1+3+3^2)+3^4(1+3+3^2)+...+3^{2008}(1+3+3^2)$
$=(1+3+3^2)(3+3^4+....+3^{2008})=13(3+3^4+...+3^{2008})\vdots 13$
Bài 1:
c.
$A=1-3+3^2-3^3+3^4-...+3^{98}-3^{99}+3^{100}$
$3A=3-3^2+3^3-3^4+3^5-...+3^{99}-3^{100}+3^{101}$
$\Rightarrow A+3A=3^{101}+1$
$\Rightarrow 4A=3^{101}+1$
$\Rightarrow A=\frac{3^{101}+1}{4}$
Bài 2:
a. $7\vdots n+1$
$\Rightarrow n+1\in \left\{1; -1; 7; -7\right\}$
$\Rightarrow n\in \left\{0; -2; 6; -8\right\}$
b.
$2n+5\vdots n+1$
$\Rightarrow 2(n+1)+3\vdots n+1$
$\Rightarrow 3\vdots n+1$
$\Rightarrow n+1\in \left\{1; -1; 3; -3\right\}$
$\Rightarrow n\in \left\{0; -2; 2; -4\right\}$
3) Cho S = 1 - 3 + 32 - 33 + ..... + 398 - 399
a) Tính tổng S => 3100 chia hết cho 4 dư 1
b) Chứng minh S chia hết cho (-20)
c) Tìm số dư khi chia S cho 9
4) Với giá trị nào của x,y thì biểu thức:
A = giá trị tuyệt đối của x - y + ( x - 3)2 + 1 có giá trị nhỏ nhất. Tìm giá trị nhỏ nhất đó.
5) Cho A = 4 - 42 + 43 - 44 + .... + 499 - 4100
a) Tìm tổng A
b) Chứng minh A chia hết cho (-12) ; A không chia hết cho 16
c) Tìm chữ số tận cùng của 5A
3) Cho S = 1 - 3 + 32 - 33 + ..... + 398 - 399
a) Tính tổng S => 3100 chia hết cho 4 dư 1
b) Chứng minh S chia hết cho (-20)
c) Tìm số dư khi chia S cho 9
4) Với giá trị nào của x,y thì biểu thức:
A = giá trị tuyệt đối của x - y + ( x - 3)2 + 1 có giá trị nhỏ nhất. Tìm giá trị nhỏ nhất đó.
5) Cho A = 4 - 42 + 43 - 44 + .... + 499 - 4100
a) Tìm tổng A
b) Chứng minh A chia hết cho (-12) ; A không chia hết cho 16
c) Tìm chữ số tận cùng của 5A
Chứng minh rằng S = 3 + 3 2 + 3 3 + . .. + 3 9 chia hết cho (-39)
S = 3 + 3 2 + 3 3 + 3 4 + 3 5 + 3 6 + 3 7 + 3 8 + 3 9 = 3 + 3 2 + 3 3 + 3 4 + 3 5 + 3 6 + 3 7 + 3 8 + 3 9 = 39 + 3 3 . 39 + 3 6 . 39 = 39 . 1 + 3 3 + 3 6 ⋮ − 39
Vậy S chia hết cho -39
Chứng minh rằng S = 3 + 3 2 + 3 3 + ... + 3 9 chia hết cho -39
S = 3 + 3 2 + 3 3 + 3 4 + 3 5 + 3 6 + 3 7 + 3 8 + 3 9 = 3 + 3 2 + 3 3 + 3 4 + 3 5 + 3 6 + 3 7 + 3 8 + 3 9 = 39 + 3 3 . 39 + 3 6 . 39 = 39. 1 + 3 3 + 3 6 ⋮ − 39
Vậy S chia hết cho -39