Cho ΔABC,lấy điểm D trên AC:\(\frac{AD}{DC }\)=\(\frac{1}{2}\).Gọi điểm M là trung điểm BD,AM cắt BC tại E.Tính \(\frac{EC}{EB}\)
Cho tam giác ABC, lấy điểm D trên AC sao cho AD/DC = 1/2. Gọi M là trung điểm của BD, AM cắt BC tại E. Tính EC/EB.
Kẻ MF // BC; F \(\in\)AC mà D \(\in\)AC nên F cũng \(\in\)DC
Xét \(\Delta\)DBC có : M là trung điểm của DB ( gt ); MF // BC ( F \(\in\)DC )
\(\Rightarrow\)F là trung điểm của DC ( Định lí 1 )
Lại xét \(\Delta\)DBC có : M là trung điểm của DB ( gt ); F là trung điểm của DC ( cmt )
\(\Rightarrow\)MF là đường trung bình của \(\Delta\)DBC ( Định nghĩa )
\(\Rightarrow MF=\frac{1}{2}BC\Rightarrow\frac{MF}{BC}=\frac{1}{2}\)( Định lý 2 ) (*)
Vì \(\frac{AD}{DC}=\frac{1}{2}\); F là trung điểm của DC hay \(\frac{FD}{DC}=\frac{FC}{DC}=\frac{1}{2}\) \(\Rightarrow\)AD = DF = FC \(\Rightarrow\frac{\text{AF}}{AC}=\frac{AD+\text{AF}}{AC}=\frac{2\cdot AD}{AC}=\frac{2\cdot1}{3}=\frac{2}{3}\)
Xét \(\Delta\)AEC ( MF // EC vì MF // BC mà E \(\in\)BC ) ta có :
\(\frac{\text{AF}}{AC}=\frac{MF}{EC}=\frac{2}{3}\)( Áp dụng định lý Ta-lét ) (**)
Ta lại có : \(\frac{MF}{BC}:\frac{MF}{EC}=\frac{MF\cdot EC}{BC\cdot MF}=\frac{EC}{BC}\)(***)
Từ (*)(**)(***) nên ta có : \(\frac{EC}{BC}=\frac{1}{2}:\frac{2}{3}=\frac{1\cdot3}{2\cdot2}=\frac{3}{4}\)\(\Rightarrow\frac{EB}{BC}=1-\frac{3}{4}=\frac{1}{4}\)
\(\Rightarrow\frac{EC}{EB}=\frac{3}{1}=3\)
Cho tam giác abc, trên cạnh ac lấy điểm d sao cho ad/dc=1/2. Gọi m là trung điểm của bd. Tia am cắt bc tại e. Tính tỉ số ec/eb.
Cho tam giác ABC trên AC lấy theo thứ tự điểm D và E sao cho AD=DE=EC. Gọi M là trung điểm của BC, BD cắt AM tại I. CMR:
1) ME//BD
2) I là trung điểm của AM
3) ID=\(\frac{1}{4}\)BD
cho tam giác ABC. Trên AC lấy D sao cho AD/DC=1/2. Gọi M là trung điểm BD. Từ AM cắt BC tại E. TÍnh tỉ số EC/ED.
1. cho 4 điểm E,B,C,D cùng nằm trên 1 đường thẳng thoả mãn \(\frac{DB}{DC}\)=\(\frac{EB}{EC}\) và 1 điểm A sao cho AE vuông góc với AD. CMR: AD,AE thứ tự là phân giác trong và ngoài của tam giác ABC
2. cho hình thang ABCD (BC//AD). gọi M,N lần lượt là 2 điểm trên AB, CD sao cho \(\frac{AM}{AB}\)=\(\frac{CN}{CD}\); đường thẳng MN cắt AC,BD tại E,F. CMR: ME=NF
Cho ΔABC (AB < AC), trên cạnh AC lấy điểm D sao cho AD=AB, gọi M là trung điểm của BD, kéo dài AM cắt BC tại K. Chứng minh KB=KD
Xét ΔABD có AB=AD
nên ΔABD cân tại A
Ta có: ΔABD cân tại A
mà AK là đường trung tuyến
nên AK là phân giác của góc BAD
Xét ΔABK và ΔADK có
AB=AD
\(\widehat{BAK}=\widehat{DAK}\)
AK chung
Do đó: ΔABK=ΔADK
=>KB=KD
cho ΔABC có AM là đường trung tuyền ứng với BC . Trên cạnh AC lấy điểm D sao cho AD =1/2 DC . Kẻ Mx song song với BD và cắt AC tại E . Đoạn BD cắt AM tại I .Chứng minh:
a) AD = DE = EC
b) SAIB = SIMB
c) SABC = 2SIBC
Giúp mình vs ạ mình cảm mơnn
a: Xét ΔBDC có
M là trung điểm của BC
ME//BD
Do đó: E là trung điểm của DC
Suy ra: \(ED=EC=\dfrac{DC}{2}\)
mà \(AD=\dfrac{DC}{2}\)
nên AD=ED=EC
cho hcn ABCD ;AB=2AD. trên cạnh AD lấy M ,trên cạnh BC lấy P sao cho AM=CP .kẻ BH vuông góc vs AC tại H .gọi Q là trung điểm của CH ,đường thẳng kẻ qua P song song vs MQ cắt AC tại N
a) chứng minh tứ giác MNPQ là hình bình hành
b) khi M là trung điểm AD .chứng minh BQ vuông góc vs NP
c) đường thẳng AP cắt DC tại điểm F . chứng minh rằng \(\frac{1}{AB^2}=\frac{1}{AP^2}+\frac{1}{4AF^2}\)
Cho tam giác ABC ( AB<AC). Trên AC lấy D,E sao cho AD=DE=EC. Gọi M là trung điểm của BC, BD cắt AM tại I.
a) Cm: I là trung điểm của AM
b) Cm: ID=BD/4
Hình tự vẽ.
a)C/m : CD=DE ; BM=MC;=> ME là đường trung bình của tam giác BDC.
=> BD // ME.
hay ID // ME mà AD=DE;=> ID là đường trung bình của tam giác AME.
=> I là trung điểm của AM.
b) Vì ID là đường trung bình của tam giác AME.
=> ID = 1/2 ME.(1)
Mà ME là đường trung bình của tam giác BDC.
=> ME=1/2 BD.(2)
Từ (1) và (2), suy ra:
ID=BD/4.