Cho góc xOy nhọn. Trên tia Ox,Oy lần lượt lấy điểm A và B sao cho OA<OB.tia phân giác của góc xAB cắt tia phân giác của góc yBA tại C. vẽ CH vuông góc với Ox , CI vuông góc với AB. CM
a)AH=AI
b)OC là tia phân giác của xOy
Cho góc nhọn xOy , trên tia Ox lấy điểm A , trên tia Oy lấy điểm B sao cho OA = OB , Từ A và B kẻ AH , BK lần lượt vuông góc với Oy và Ox.
a) Chứng minh △OHA = △OKB
b) Gọi I là giao điểm của AH và BK . Chứng minh rằng OI là tia phân giác của góc xOy
a) Xét ΔOHA vuông tại H và ΔOKB vuông tại K có
OA=OB(gt)
\(\widehat{AOH}\) chung
Do đó: ΔOHA=ΔOKB(cạnh huyền-góc nhọn)
b)
Xét ΔOAB có OA=OB(gt)
nên ΔOAB cân tại O(Định nghĩa tam giác cân)
Xét ΔAHB vuông tại H và ΔBKA vuông tại K có
BA chung
\(\widehat{ABH}=\widehat{BAK}\)(hai góc ở đáy của ΔOAB cân tại O)
Do đó: ΔAHB=ΔBKA(cạnh huyền-góc nhọn)
Suy ra: \(\widehat{HAB}=\widehat{KBA}\)(hai góc tương ứng)
hay \(\widehat{IAB}=\widehat{IBA}\)
Xét ΔIBA có \(\widehat{IAB}=\widehat{IBA}\)(cmt)
nên ΔIBA cân tại I(Định lí đảo của tam giác cân)
Suy ra: IA=IB(hai cạnh bên)
Xét ΔOIA và ΔOIB có
OI chungIA=IB(cmt)
OA=OB(Gt)
Do đó: ΔOIA=ΔOIB(c-c-c)
Suy ra: \(\widehat{AOI}=\widehat{BOI}\)(hai góc tương ứng)
hay \(\widehat{xOI}=\widehat{yOI}\)
mà tia OI nằm giữa hai tia Ox, Oy
nên OI là tia phân giác của \(\widehat{xOy}\)(đpcm)
Cho góc nhọn xOy. Trên tia Ox và Oy lần lượt lấy hai điểm A và B sao cho OA = OB. Gọi M là trung điểm của đoạn thẳng AB. Chứng minh OM là tia phân giác của góc xOy.
Cho góc nhọn xOy và phân giác OM của góc đó. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA=OB.
a) Chứng minh rằng điểm A đối xứng với B qua OM
b) Gọi C và D là hai điểm lần lượt tên Ox và Oy sao cho OC=OD, Chứng minh AC=BD
1.Cho góc nhọn xOy và tia phân giác OM của góc đó. Trên Ox lấy điểm A,trên Oy lấy điểm B sao cho OA=OB
a,CM:A đối xứng vs B qua OM.
b,Gọi C và D là 2 điểm lần lượt trên Ox và Oy sao cho OC=OD.CMR:AC=BD.
Bài 5: Cho góc nhọn xOy. Vẽ tia phân giác Oz, trên tia Ox, Oy lần lượt lấy 2 điểm A và B sao cho OA = OB. Gọi I là giao điểm của AB với Oz
a/ Trên tia Oz lấy điểm E sao cho OI = IE. Chứng minh: BE//OA ; b/Chứng minh: AB OE
a: Xét tứ giác BOAE có
I là trung điểm của BA
I là trung điểm của OE
Do đó: BOAE là hình bình hành
Suy ra: BE//OA
Cho góc nhọn xOy, trên 2 cạnh Ox, Oy lần lượt lấy 2 điểm A và B sao cho OA = OB, tia phân giác của góc xOy cắt AB tại I.
a) Chứng minh OI ⊥ AB.
b) D là hình chiếu của A trên Oy, C là giao điểm của AD với OI. Chứng minh BC ⊥ Ox
b) Xét tam giác AOC và tam giác BOC có:OA=OB(gt)góc AOC = góc BOC(OC là tia phân giác góc AOB)OC chung=>tam giác AOC=tam giác BOC(c-g-c)=>góc OAC= góc OBC=90độ(2 góc tương ứng)=>BC vuông góc với Ox
b) Xét tam giác AOC và tam giác BOC có:OA=OB(gt)góc AOC = góc BOC(OC là tia phân giác góc AOB)OC chung=>tam giác AOC=tam giác BOC(c-g-c)=>góc OAC= góc OBC=90độ(2 góc tương ứng)=>BC vuông góc với Ox
Bài 1 : Cho góc nhọn xOy và tia phân giác Om của góc đó .Trên tia Ox lấy điểm A Trên tia Oy lấy điểm B sao cho oa = OB
a) chứng minh rằng A đối xứng với B qua Om
b)Gọi C và D là 2 điểm lần lượt trên Ox,Oy sao cho OC=OD. Chứng minh rằng AC=BD
GIÚP MK VS Ạ
14)Cho góc nhọn xOy, trên 2 cạnh Ox, Oy lần lượt lấy 2 điểm A và B sao cho OA = OB, tia phân giác của góc xOy cắt AB tại I. a) Chứng minh OI ⊥ AB . b) Gọi D là hình chiếu của điểm A trên Oy, C là giao điểm của AD với OI. Chứng minh BC ⊥ Ox .p
a.Xét $\triangle$OAI và $\triangle$OBI có:
$\widehat{AOI}$ = $\widehat{BOI}$(OI là phân giác của $\widehat{xOy}$)
OB = OA(gt)
OI chung
=> $\triangle$OAI = $\triangle$OBI(c-g-c)
=>$\widehat{OIA}$ = $\widehat{OIB}$(2 góc t/ứ)
mà $\widehat{OIA}$ + $\widehat{OIB}$ = $180^0$
=>$\widehat{OIA}$ = $\widehat{OIB}$ = $180^0$ : 2 = $90^0$
=> OI$\bot$AB(đpcm)
b.Xét $\triangle$OBA có
AD là đng cao t/ứ vs OB(gt)
OI là đng cao t/ứ vs AB(cmt)
AD cắt OI tại C(gt)
=>C là trực tâm của $\triangle$OBA(tính chất 3 đng cao của $\triangle$)
=>BC ⊥Ox(đpcm)
Cho góc nhọn xOy. Trên tia Ox lấy A, C (A nằm giữa O và C). Trên tia Oy lần lượt lấy B, D sao cho OA = OB, AC = BD.
a. Chứng minh AD = BC
b. Gọi E là giao điểm của AD và BC. Chứng minh EAC = EBD
c. Chứng minh OE là phân giác của góc xOy và OE CD
a: Xét ΔOAD và ΔOBC có
OA=OB
\(\widehat{O}\) chung
OD=OC
Do đó: ΔOAD=ΔOBC
Suy ra: AD=BC
b: Xét ΔACD và ΔBDC có
AC=BD
\(\widehat{ACD}=\widehat{BDC}\)
CD chung
Do đó: ΔACD=ΔBDC
Suy ra: \(\widehat{EAC}=\widehat{EBD}\)
Xét ΔEAC và ΔEBD có
\(\widehat{EAC}=\widehat{EBD}\)
AC=BD
\(\widehat{ECA}=\widehat{EDB}\)
Do đó: ΔEAC=ΔEBD