Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoài Thu Vũ
Xem chi tiết
HT.Phong (9A5)
5 tháng 8 2023 lúc 9:22

\(A=\left(\dfrac{1}{\sqrt{x-1}}+\dfrac{1}{\sqrt{x-1}}\right)^2\cdot\dfrac{x^2-1}{2}-\sqrt{x^2-1}\) (ĐK: \(x>1\))

\(A=\left(\dfrac{2}{\sqrt{x-1}}\right)^2\cdot\dfrac{x^2-1}{2}-\sqrt{x^2-1}\)

\(A=\dfrac{4}{x-1}\cdot\dfrac{\left(x+1\right)\left(x-1\right)}{2}-\sqrt{x^2-1}\)

\(A=2\left(x+1\right)-\sqrt{\left(x+1\right)\left(x-1\right)}\)

\(A=\sqrt{x+1}\left(2\sqrt{x+1}-\sqrt{x-1}\right)\)

Hoài Thu Vũ
Xem chi tiết
Hà Quang Minh
5 tháng 8 2023 lúc 12:03

\(A=\left(\dfrac{1}{\sqrt{x-1}}+\dfrac{1}{\sqrt{x+1}}\right)^2\cdot\dfrac{x^2-1}{2}-\sqrt{x^2-1}\\ \Rightarrow A=\left(\dfrac{\sqrt{x+1}+\sqrt{x-1}}{\sqrt{x^2-1}}\right)^2\cdot\dfrac{x^2-1}{2}-\sqrt{x^2-1}\\ \Rightarrow A=\dfrac{\left(\sqrt{x+1}+\sqrt{x-1}\right)^2}{2}-\sqrt{x^2-1}\\ \Rightarrow A=\dfrac{2x+2\sqrt{x^2-1}-2\sqrt{x^2-1}}{2}\\ \Rightarrow A=x\)

✰ɮạċɦ☠ℌổ✰
Xem chi tiết
Trương quốc trọng
29 tháng 3 2020 lúc 9:26

ggggghgdhfdhfghsagyfgfghhg

Khách vãng lai đã xóa
✰๖ۣۜŠɦαɗøω✰
29 tháng 3 2020 lúc 10:00

Ta có : A = \(\left(\frac{x+2}{x.\sqrt{x}-1}+\frac{\sqrt{x}+2}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\right):\frac{\sqrt{x}+1}{x+\sqrt{x}+1}\)

                 = \(\frac{x+2+x+\sqrt{x}-2-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right).\left(x+\sqrt{x}+1\right)}.\frac{x+\sqrt{x}+1}{\sqrt{x}+1}\)

                = \(\frac{x-1}{\left(\sqrt{x}-1\right).\left(x+\sqrt{x}+1\right)}.\frac{x+\sqrt{x}+1}{\sqrt{x}+1}=1\)

Vậy A = 1

Khách vãng lai đã xóa
Trần gia Lân
Xem chi tiết
Trần gia Lân
Xem chi tiết
Trần Ngyễn Yến Vy
Xem chi tiết
nguyen phuong thao
Xem chi tiết
shitbo
12 tháng 6 2019 lúc 15:50

\(=\left(\frac{x}{2\sqrt{x}}-\frac{1}{2\sqrt{x}}\right)\left(\frac{x\sqrt{x}}{\sqrt{x}+1}-\frac{x+\sqrt{x}}{\sqrt{x}-1}\right)\)

\(=\left(\frac{x-1}{2\sqrt{x}}\right)\left(\frac{x\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\frac{\left(x+\sqrt{x}\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)

\(=\left(\frac{x-1}{2\sqrt{x}}\right)\left(\frac{x^2-x\sqrt{x}}{x-1}-\frac{x\sqrt{x}+2x+\sqrt{x}}{x-1}\right)\)

\(=\left(\frac{x-1}{2\sqrt{x}}\right)\left(\frac{x^2-2x\sqrt{x}-2x-\sqrt{x}}{x-1}\right)=\frac{x^2-\sqrt{x}-2x\sqrt{x}-2x}{2\sqrt{x}}=\frac{x\sqrt{x}-1-2x-2\sqrt{x}}{2}\)

Nguyễn Thị Bích Ngọc
12 tháng 6 2019 lúc 19:57

\(\left(\frac{\sqrt{x}}{2}-\frac{1}{2\sqrt{x}}\right)\left(\frac{x\sqrt{x}}{\sqrt{x}+1}-\frac{x+\sqrt{x}}{\sqrt{x}-1}\right)\)

\(=\frac{x-1}{2\sqrt{x}}.\frac{x\sqrt{x}\left(\sqrt{x}-1\right)-\left(x+\sqrt{x}\right)\left(\sqrt{x}+1\right)}{x-1}\)

\(=\frac{x^2-x\sqrt{x}-\left(x\sqrt{x}+x+x+\sqrt{x}\right)}{2\sqrt{x}}\)

\(=\frac{x^2-x\sqrt{x}-x\sqrt{x}-2x-\sqrt{x}}{2\sqrt{x}}\)

\(=\frac{x^2-2x\sqrt{x}-2x-\sqrt{x}}{2\sqrt{x}}\)

Cao Thành Long
Xem chi tiết
Nguyễn Linh Chi
29 tháng 6 2019 lúc 17:04

ĐK : x>0, x khác 1

\(A=\left(\frac{1}{\sqrt{x}+1}+\frac{2\left(1-\sqrt{x}\right)}{x\left(\sqrt{x}+1\right)-\left(\sqrt{x}+1\right)}\right):\left(\frac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}-\frac{2}{x-1}\right)\)

\(=\left(\frac{1}{\sqrt{x}+1}-\frac{2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right):\left(\frac{1}{\sqrt{x}-1}-\frac{2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\)

\(=\frac{\sqrt{x}+1-2}{\left(\sqrt{x}+1\right)^2}:\frac{\sqrt{x}+1-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}-1}{\left(\sqrt{x}+1\right)^2}.\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)

\(=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)

Tran Van Huy
Xem chi tiết
shoppe pi pi pi pi
Xem chi tiết
Phạm Thị Thùy Linh
10 tháng 7 2019 lúc 20:52

\(A=\frac{\sqrt{x}+1}{x-1}-\frac{x+2}{x\sqrt{x}-1}-\frac{\sqrt{x}+1}{x+\sqrt{x}+1}\)

\(=\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)\(-\frac{x-2}{\sqrt{x}^3-1}\)\(-\frac{\sqrt{x}+1}{x+\sqrt{x}+1}\)

\(=\frac{1}{\sqrt{x}-1}\)\(-\frac{x-2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)\(-\frac{\sqrt{x}+1}{x+\sqrt{x}+1}\)

\(=\frac{x+\sqrt{x}+1-x+2-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(=\frac{2}{\sqrt{x}^3-1}\)