Bài 1: Cho (O) dây. Tiếp tuyến của (O) tại A và B cắt nhau tai M. Biết AMB = 50*
a) Tính số đo cung AB
b) Trên nửa mặt phẳng bờ OB( không chứa điểm A, kẻ đường thẳng qua O và song song với Bm, d cắt (O) tại D. Tính số số đo cung AD.
Cho (O) dây cung AB.Tiếp tuyến của (O) tại A và B cắt nhau tại M. Biết góc AMB = 45 độ.
a) Tính số đo cung AM.
b) Trên nửa mặt phẳng bờ OB ( không chứa điểm A), kẻ đường thẳng d qua (O) tại D. Tính số đo cung AD.
Bài 1: Cho (O) dây cung AB. Tiếp tuyến tại A và B cắt nhau tại M. Biết AMB = 50°
a) Tính số đo cung AB.
b) Trên nửa mp bờ OB (không chứa điểm A), kẻ đường thẳng d qua O và song song với BM, d cắt (O) tại D. Tính số đo cung AD.
Bài 2: Cho (O;R). Một điểm A ở ngoài đường tròn sao cho OA=2R. Vẽ các tiếp tuyến AB và AC đến (O) (A, B là hai tiếp điểm).
a) Tính số đo các góc AOB và BOC.
b) Tính số đo cung nhỏ và cung lớn BC.
** VẼ HÌNH GIÙM MIK VỚI CẢM ƠN NHÌU
Bài 1: Cho (O) dây cung AB. Tiếp tuyến tại A và B cắt nhau tại M. Biết AMB = 50°
a) Tính số đo cung AB.
b) Trên nửa mp bờ OB (không chứa điểm A), kẻ đường thẳng d qua O và song song với BM, d cắt (O) tại D. Tính số đo cung AD.
Bài 2: Cho (O;R). Một điểm A ở ngoài đường tròn sao cho OA=2R. Vẽ các tiếp tuyến AB và AC đến (O) (A, B là hai tiếp điểm).
a) Tính số đo các góc AOB và BOC.
b) Tính số đo cung nhỏ và cung lớn BC.
** VẼ HÌNH GIÙM MIK VỚI CẢM ƠN NHÌU
Bài 1: Cho (O) dây cung AB. Tiếp tuyến tại A và B cắt nhau tại M. Biết AMB = 50°
a) Tính số đo cung AB.
b) Trên nửa mp bờ OB (không chứa điểm A), kẻ đường thẳng d qua O và song song với BM, d cắt (O) tại D. Tính số đo cung AD.
Bài 2: Cho (O;R). Một điểm A ở ngoài đường tròn sao cho OA=2R. Vẽ các tiếp tuyến AB và AC đến (O) (A, B là hai tiếp điểm).
a) Tính số đo các góc AOB và BOC.
b) Tính số đo cung nhỏ và cung lớn BC.
** VẼ HÌNH GIÙM MIK VỚI CẢM ƠN NHÌU
Cho đường tròn (O) bán kính R, một đường thẳng d không đi qua O cắt (O) tại A và B. Trên d lấy điểm C sao cho A nằm giữa C và B. Từ C kẻ hai tiếp tuyến CM; CN với (O) (M và N là 2 tiếp điểm sao cho M và O nằm trên cùng nửa mặt phẳng bờ chứa đường thẳng AB). a) Chứng minh : Bốn điểm C; M; O; N cùng thuộc một đường tròn. b) Chứng minh : CM2 = CA. CB c) Đoạn CO cắt đoạn MN tại H. Chứng minh CH. CO = CA. CB và góc CHA bằng góc OAB d) Đường thẳng vuông góc với CO tại O cắt các tia CM và CN thứ tự tại E và F. Xác định vị trí của C trên đường thẳng d để diện tích tam giác CEF nhỏ nhất.
a: Xét tứ giác CMON có \(\widehat{CMO}+\widehat{CNO}=90^0+90^0=180^0\)
nên CMON là tứ giác nội tiếp
=>C,M,O,N cùng thuộc một đường tròn
b: Xét (O) có
\(\widehat{CMA}\) là góc tạo bởi tiếp tuyến MC và dây cung MA
\(\widehat{ABM}\) là góc nội tiếp chắn cung AM
Do đó: \(\widehat{CMA}=\widehat{ABM}=\widehat{CBM}\)
Xét ΔCMA và ΔCBM có
\(\widehat{CMA}=\widehat{CBM}\)
\(\widehat{MCA}\) chung
Do đó: ΔCMA~ΔCBM
=>\(\dfrac{CM}{CB}=\dfrac{CA}{CM}\)
=>\(CM^2=CA\cdot CB\)
c: Xét (O) có
CM,CN là các tiếp tuyến
Do đó: CM=CN
=>C nằm trên đường trung trực của MN(1)
Ta có: OM=ON
=>O nằm trên đường trung trực của MN(2)
Từ (1),(2) suy ra OC là đường trung trực của MN
=>OC\(\perp\)MN tại H
Xét ΔCMO vuông tại M có MH là đường cao
nên \(CH\cdot CO=CM^2\)
=>\(CH\cdot CO=CA\cdot CB\)
=>\(\dfrac{CH}{CB}=\dfrac{CA}{CO}\)
Xét ΔCHA và ΔCBO có
\(\dfrac{CH}{CB}=\dfrac{CA}{CO}\)
\(\widehat{HCA}\) chung
Do đó: ΔCHA~ΔCBO
=>\(\widehat{CHA}=\widehat{CBO}\)
mà \(\widehat{CBO}=\widehat{OAB}\)(ΔOAB cân tại O)
nên \(\widehat{CHA}=\widehat{OAB}\)
Cho nửa đường tròn tâm O , đường kính AB . Kẻ các tiếp tuyến Ax , By ( Ax , By và nửa đường tròn thuộc cùng một nửa mặt phẳng bờ AB ) . Một điểm M thuộc nửa đường tròn , qua M kẻ tiếp tuyến của nửa đường tròn cắt Ax , By theo thứ tự tại C và D .
a ) Tính số đo góc AMB ,
b ) Chứng minh CD = AC + BD
c ) Chứng minh CM . MD không đổi
Cho điểm M nằm trên nửa đường tròn tâm O đường kính AB =2R (M không trùng với A và B). Trong nửa mặt phẳng chứa nửa đường tròn có bờ là đường thẳng AB , kẻ tiếp tuyến Ax .Đường thẳng BM cắt Ax tại I , tia phân giác của góc IAM cắt nửa đường tròn O tại E , cắt IB tai F; đường thẳng BE cắt AI tại H , cắt AM tại K
a, Cmr : 4 điểm F,E,K,M cùng nằm trên 1 đường tròn
b, Cm : HF\(\perp\) BI
c, Xác định vị trí của M trên nửa đường tròn O để chu vi tam giác AMB đạt giá trị lớn nhất và tìm giá trị đó theo R ?
Cho đường tròn tâm (O) đường kính AB. Gọi M là điểm thuộc cung AB (M≠≠A, M≠≠B) và I là điểm thuộc đoạn OA (I≠≠A, I≠≠O). Trên nửa mặt phẳng bờ AB có chứa điểm M, kẻ các tia tiếp tuyến Ax, By với đường tròn (O). Qua M kẻ đường thẳng vuông góc với IM, đường thẳng này cắt Ax, By lần lượt tại C,D. Gọi M là giao điểm của AM với IC, F là giao điểm của BM với ID. Chứng minh rằng:
a, Tứ giác MIEF là tư giác nội tiếp.
b, EF song song vớiAB.
c,OM là tiếp tuyến chung của đươnmg tròn ngoại tiếp tam giác CEM và DFM
TK:
a.
xét tứ giác BDMI ta có : IMD = 90 (CD ⊥ MI)
IBD = 90 (BD là tiếp tuyến)
mà 2 góc này ở vị trí đối nhau ⇒tứ giác BDMI là tứ giác nội tiếp
⇒ DMB = DIB (2 góc nội tiếp cùng chắng cung DB của tứ giác BDMI) (1)
xét tứ giác ACMI ta có : IAC = 90 (AC là tiếp tuyến)
IMC = 90 (CD ⊥ MI)
mà 2 góc này ở vị trí đối nhau ⇒⇒ tứ giác ACMI là tứ giác nội tiếp
⇒ CMA = CIA (2 góc nội tiếp cung chắng cung AC của tứ giác ACMI) (2)
mà CMA + DMB = 90 (góc AMB là góc nội tiếp chắng nửa (o)) (3)
tứ (1) ; (2) và (3) ta có : CIA + DIB = 90
⇒ CID = 180 - 90 = 90
xét tứ giác MIEF ta có : AMB = 90 (góc nội tiếp chắng nửa (o))
CID = 90 (chứng minh trên)
mà 2 góc này ở vị trí đối nhau ⇒ tứ giác MIEF là tứ giác nội tiếp (đpcm)
TK:b) ta có
\(\widehat{MEF}\)=\(\widehat{MIE}\)=\(\widehat{MIC}\)=\(\widehat{MAC}\)=\(\widehat{MBA}\)
⇒ EF // AB (đpcm)
c.
Ta có \(\widehat{AMO}\)=\(\widehat{OAM}\)=\(\widehat{IAM}\)=\(\widehat{ICM}\)=\(\widehat{MCE}\)
→OM là tiếp tuyến của (CME và DFM)
hình ảnh mag tính chất minh họa
(về cơ bản thì đúng)
Cho (O;R) và đường thẳng (d) không đi qua O cắt đường tròn tại 2 điểm A và B. Lấy 1 điểm M trên tia đối của tia BA. Kẻ tiếp tuyến MC với (O) (C là tiếp điểm), MC thuộc nửa mặt phẳng chứa A bờ OM. Gọi H là trung điểm của AB.
a/ CM M, O, H, C nằm trên 1 đường tròn.
b/ Vẽ dây \(CD\perp OM\). CM MD là tiếp tuyến của dây (O).
c/ Đoạn thẳng OM cắt (O) tại I. CM I là tâm đường tròn nội tiếp tam giác MCD.
d/ Đường thẳng đi qua O vuông góc với OM cắt MC, MD theo thứ tự tại P và Q. Tìm vị trí của M để \(S_{\Delta MQP}\)đặt giá trị nhỏ nhất.