Bài 3: Cho đường thẳng (d): x – 2y + 4 = 0 và điểm A(4; 1)
a) Tìm tọa độ hình chiếu vuông góc của A xuống d.
b) Tìm tọa độ B đối xứng với A qua (d).
Bài 1: Trong htđ Oxy cho đường thẳng d : 3x-y+4 = 0 và đường thẳng denta : x+2y-5=0 .
Điểm A ( -2; 3).
1) Hãy tìm tọa độ điểm H là hình chiếu của A trên d.
2) tìm tọa độ A’ là điểm đối xứng với A qua d.
3) Viết phương trình đường thẳng đối xứng với đường thẳng d qua đường thẳng denta
4) Viết phuong trình đường thẳng đôi xứng với d qua A ( 3 dạng PT).
5) Tìm tọa độ điểm N trên d sao cho ON nhỏ nhất.
P/S : GIÚP MK VS Ạ. MK CẦN LẮM Ạ. GIẢI CHI TIẾT GIÚP MK VS Ạ. THANKS NHÌU NHÌU Ạ
1. Gọi d' là đường thẳng qua A và vuông góc d
\(\Rightarrow\) d' nhận (1;3) là 1 vtpt
Phương trình d':
\(1\left(x+2\right)+3\left(y-3\right)=0\Leftrightarrow x+3y-4=0\)
H là giao điểm d và d' nên tọa độ thỏa mãn:
\(\left\{{}\begin{matrix}3x-y+4=0\\x+3y-4=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{4}{5}\\y=\dfrac{8}{5}\end{matrix}\right.\)
\(\Rightarrow H\left(-\dfrac{4}{5};\dfrac{8}{5}\right)\)
2.
Do A' đối xứng A qua d nên H là trung điểm AA'
\(\Rightarrow\left\{{}\begin{matrix}x_{A'}=2x_H-x_A=\dfrac{2}{5}\\y_{A'}=2y_H-y_A=\dfrac{1}{5}\end{matrix}\right.\)
\(\Rightarrow A'\left(\dfrac{2}{5};\dfrac{1}{5}\right)\)
3.
Gọi B là giao điểm d và \(\Delta\) thì tọa độ B thỏa mãn:
\(\left\{{}\begin{matrix}3x-y+4=0\\x+2y-5=0\end{matrix}\right.\) \(\Rightarrow B\left(-\dfrac{3}{7};\dfrac{19}{7}\right)\)
Lấy điểm \(C\left(0;4\right)\) thuộc d
Phương trình đường thẳng \(d_1\) qua C và vuông góc \(\Delta\) có dạng:
\(2\left(x-0\right)-\left(y-4\right)=0\Leftrightarrow2x-y+4=0\)
Gọi D là giao điểm \(\Delta\) và \(d_1\Rightarrow\left\{{}\begin{matrix}x+2y-5=0\\2x-y+4=0\end{matrix}\right.\) \(\Rightarrow D\left(-\dfrac{3}{5};\dfrac{14}{5}\right)\)
Gọi D' là điểm đối xứng C qua \(\Delta\Rightarrow\) D là trung điểm CD'
\(\Rightarrow\left\{{}\begin{matrix}x_{D'}=2x_D-x_C=-\dfrac{6}{5}\\y_{D'}=2y_D-y_C=\dfrac{8}{5}\end{matrix}\right.\) \(\Rightarrow\overrightarrow{BD'}=\left(-\dfrac{27}{35};-\dfrac{39}{35}\right)=-\dfrac{3}{35}\left(9;13\right)\)
Phương trình đường thẳng đối xứng d qua denta (nhận \(\left(9;13\right)\) là 1 vtcp và đi qua D':
\(\left\{{}\begin{matrix}x=-\dfrac{6}{5}+9t\\y=\dfrac{8}{5}+13t\end{matrix}\right.\)
4.
Gọi \(d_1\) là đường thẳng đối xứng với d qua A
\(\Rightarrow d_1||d\Rightarrow d_1\) có dạng: \(3x-y+c=0\)
Do A cách đều d và \(d_1\) nên:
\(d\left(A;d\right)=d\left(A;d_1\right)\)
\(\Leftrightarrow\dfrac{\left|3.\left(-2\right)-3+4\right|}{\sqrt{3^2+\left(-1\right)^2}}=\dfrac{\left|3.\left(-2\right)-3+c\right|}{\sqrt{3^2+\left(-1\right)^2}}\)
\(\Leftrightarrow\left|c-9\right|=5\Rightarrow\left[{}\begin{matrix}c=4\left(loại\right)\\c=14\end{matrix}\right.\)
Vậy pt \(d_1\) có dạng: \(3x-y+14=0\)
Em tự chuyển sang 2 dạng còn lại
Cho elip 3x2 + 4y2 – 48 = 0 và đường thẳng d: x - 2y + 4 = 0. Giao điểm của d và Elip là
A. (0; - 4); (-2; -3) B. (4; 0); (3; 2) C. (0; 4); (-2; 3) D. (-4; 0); (2; 3)
Có: `x-2y+4=0`
`<=>x=2y-4`
Thay `x=2y-4` vào `(E)` có:
`3(2y-4)^2+4y^2-48=0`
`<=>3(4y^2-16y+16)+4y^2-48=0`
`<=>12y^2-48y+48+4y^2-48=0`
`<=>` $\left[\begin{matrix} y=3\\ y=0\end{matrix}\right.$
`@y=3=>x=2.3-4=2`
`@y=0=>x=2.0-4=-4`
`=>` Tọa độ giao điểm của `(E)` và `(d)` là: `(2;3)` và `(-4;0)`
`->D`
\(\Rightarrow\) \(chọn\) \(D\)
\(xét\) \(hpt\) \(:\)
\(\left\{{}\begin{matrix}3x^2+4y^2-48=0\\x-2y+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3\left(2y-4\right)^2+4y^2-48=0\\x=2y-4\end{matrix}\right.\)
\(giải:\) \(3\left(4y^2-16y+16\right)+4y^2-48=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}12y^2-48y+48+4y^2-48=0\\16y^2-48y=0\\\left[{}\begin{matrix}y=0\Rightarrow x=-4\\y=3\Rightarrow x=2\end{matrix}\right.\end{matrix}\right.\)
\(vậy\) \(giao\) \(điểm\) \(của\) \(elip\) \(\left(E\right)\) \(là\) \(\left(-4;0\right)\) \(và\) \(\left(2;3\right)\)
Cho đường thẳng d : x-2y+4=0 và điểm A(4;1) . Tìm toạ độ hình chiếu vương góc của A lên d
Gọi d' là đường thẳng qua A và vuông góc d
\(\Rightarrow d'\) nhận (2;1) là 1 vtpt
Phương trình d':
\(2\left(x-4\right)+1\left(y-1\right)=0\Leftrightarrow2x+y-9=0\)
Hình chiếu vuông góc của A lên d là giao điểm d và d' có tọa độ là nghiệm:
\(\left\{{}\begin{matrix}x-2y+4=0\\2x+y-9=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{14}{5}\\y=\dfrac{17}{5}\end{matrix}\right.\)
Bài 1: Lập phương trình đường thẳng d' đối xứng với đường thẳng d qua đường thẳng Δ, với:
a, d: 2x-y+1=0, Δ: 3x-4y+2=0
b, d: x-2y+4=0, Δ: 2x+y-2=0
c, d: x+y-1=0, Δ: x-3y+3=0
d, d: 2x-3y+1=0, Δ: 2x-3y-1=0
Bài 2: Lập phương trình đường thẳng d' đối xứng với đường thẳng d qua điểm I với:
a, d: 2x-y+1=0, I(2;1)
b, d: x-2y+4=0, I(-3;0)
c, d: x+y-1=0, I(0:3)
d, d: 2x-3y+1=0, I trùng O(0;0)
GIÚP EM VỚI Ạ!! EM ĐANG CẦN GẤP LẮM HUHUU T^T EM XIN CẢM ƠN!!!
mỗi bài, mk làm một phần ví dụ cho cậu nhé
nó đối xứng với nhau qua pt đường thẳng đenta,
trường hợp (d) ko cắt (đen ta) hay (d) cắt (đen ta) thì đều làm theo phương pháp sau
lấy 2 điểm bất kì thuộc (d) thì ta có như sau: A(0:1) là điểm thuộc đường thẳng (d)
lấy A' đối xứng với A qua (đen ta)
liên hệ tính chất đối xứng qua đường thẳng thì hiểu là AA' vuông góc (đen ta)
đồng thời giao điểm của AA' với (đen ta) là trung điểm của AA'
dễ dàng tìm đc giao điểm của (đen ta) với (d) là K(-2/5;1/5)
từ pt (đenta) thì dễ dàng =) vecto pháp tuyến của (đenta) =) (3;-4)
vì AA' vuông góc với (đenta) nên =) vectơ pháp tuyến của AA' là (4;-3)
áp véctơ pháp tuyến của AA' vào phương trình tổng quát đc: 4(x-0)-3(y-1)=0 (=) 4x-3y+3=0
gọi I là giao điểm của AA' và (đenta) =) I(-6/7;-1/7)
mà I là trung điểm của AA'
chắc chắn cậu sẽ dễ dàng suy ra điểm A'
mà K và A' thuộc (d') nên dễ dàng =) phương trình của (d')
Trong mặt phẳng tọa độ Oxy cho điểm A(4; – 1), đường thẳng (d) : 3x – 2y + 1 = 0 và đường tròn (C) :
x^2 + y^2 - 2x + 4y -4 = 0
a. Tìm tọa độ A’ và phương trình (d’) lần lượt là ảnh của A và (d) qua phép tịnh tiến theo vectơ v = (– 2; 3)
b. Tìm phương trình đường tròn (C’) là ảnh của đường tròn (C) qua phép đối xứng trục là đường thẳng (D) : x – y = 0
1.
Trục Ox có pt \(y=0\) nên đường song song với nó là \(y=4\)
2.
\(\overrightarrow{MI}=\left(1;-2\right)\)
Đường thẳng tiếp xúc với đường tròn tâm I tại M đi qua M và vuông góc MI nên nhận \(\overrightarrow{MI}\) là 1 vtpt
Phương trình:
\(1\left(x-1\right)-2\left(y-3\right)=0\Leftrightarrow x-2y+5=0\)
Bài 6/ Cho A(1;1) ,B(4;-3) và đường thẳng d : x-2y-1=0 . Tìm điểm C thuộc đường thẳng d sao cho khoảng cách từ C đến đường thẳng AB bằng 6
Câu 26. Cho hai đường tròn (C):(x-2)^ 2 +(y-2)^ 2 =9;(C' ):x^ 2 +y^ 2 +4x-8y+11=0 ,biết (C) và (C') đối xứng nhau qua đường thẳng (a) .Phương trình của (a) là : A. 2x + 2y - 4 = 0 B.2x-y+3=0 . C. x + y - 4 = 0 . D. 2x + 2y = 0 .
trong hệ trục tọa độ Oxy, cho 2 điểm A(0, 1) và B(3, 4). Điểm M (a, b) thuộc đường thẳng (d) x-2y-2=0 thỏa mãn \(\left|\overrightarrow{MA}+\overrightarrow{MB}\right|\) đạt giá trị nhỏ nhất, Khi đó a+b bằng
M thuộc d nên: \(a-2b-2=0\Rightarrow2b=a-2\)
\(\left\{{}\begin{matrix}\overrightarrow{MA}=\left(-a;1-b\right)\\\overrightarrow{MB}=\left(3-a;4-b\right)\end{matrix}\right.\) \(\Rightarrow\overrightarrow{MA}+\overrightarrow{MB}=\left(3-2a;5-2b\right)=\left(3-2a;9-2a\right)\)
Đặt \(T=\left|\overrightarrow{MA}+\overrightarrow{MB}\right|=\sqrt{\left(3-2a\right)^2+\left(9-2a\right)^2}=\sqrt{8a^2-48a+90}=\sqrt{8\left(a-3\right)^2+18}\ge\sqrt{18}\)
Dấu "=" xảy ra khi \(a-3=0\Leftrightarrow a=3\Rightarrow b=\dfrac{1}{2}\)
Trong mặt phẳng tọa độ Oxy cho điểm D(6;2) và hai đường thẳng (d1): x-2y+1=0; (d2): x+2y-3=0. Viết phương trình đường thẳng \(\left(\Delta\right)\) đi qua D và cắt hai đường thẳng (d1); (d2) tại hai điểm B; C sao cho tam giác tạo bởi ba đường thẳng (d1); (d2); \(\left(\Delta\right)\) là tam giác cân, với BC là cạnh đáy.