Cho hình thang ABCD(AB//CD),kẻ O song song AB cắt AD,BC lần lượt tại M,N
a.Cm OM=ON
b.\(\frac{2}{MN}=\frac{1}{AB}+\frac{1}{CD}\)
Cho hình thang ABCD (AB // CD), hai đường chéo cắt nhau tại O. Qua O kẻ đường thẳng d song song với AB cắt AD và BC lần lượt tại M và N. Chứng minh: a) OM = ON; b) 1/AB + 1/CD + 2/MN
tham khảo :
https://lazi.vn/edu/exercise/582904/cho-hinh-thang-abcd-ab-cd-cheo-cat-nhau-tai-o-p
Cho hình thang ABCD ( AB // CD ). Qua giao điểm O hai đường chéo AD và BC vẽ đường song song với AB và CD cắt AD và BC tại M và N. Chứng minh:
a)OM = ON.
b) \(\frac{1}{AB}+\frac{1}{CD}=\frac{2}{MN}\)
Cho hình thanh ABCD (AB//CD), hai đường chéo cắt nhau tại O. Qua O vẽ một đường thẳng song song với AB cắt AD và BC lần lượt tại M,N.
a) OM=ON
b) \(\frac{1}{AB}+\frac{1}{CD}=\frac{2}{MN}\)
c) Diện tích tam giác AOD. diện tích tam giác BOC= diện tích tam giác AOB.diện tích tam giác COD.
Biết làm câu a thì mình làm trước câu a thôi nha
Ta có OM // AB
\(\Rightarrow\)\(\frac{OM}{AB}=\frac{OD}{DB}\)( 1 )
ON // AB
\(\Rightarrow\)\(\frac{ON}{AB}=\frac{OC}{AC}\)( 2 )
AB // CD
\(\Rightarrow\)\(\frac{OD}{OB}=\frac{OC}{OA}\Rightarrow\frac{OD}{OB+OD}=\frac{OC}{OA+OC}\Rightarrow\frac{OD}{DB}=\frac{OC}{AC}\) ( 3 )
Từ ( 1 ) , ( 2 ) , ( 3 ) suy ra \(\frac{OM}{AB}=\frac{ON}{AB}\)
\(\Rightarrow\)\(OM=ON\left(ĐPCM\right)\)
Câu hỏi của trần trúc quỳnh - Toán lớp 9 - Học toán với OnlineMath
Em tham khảo tại đây nhé.
Tham khảo link này: https://olm.vn/hoi-dap/detail/12429878697.html
Cho hình thang ABCD (AB//CD), 2 đường chéo cắt nhau tại O. Qua O vẽ đường thẳng sọng song với AB cắt AD và BC lần lượt tại M và N. Chứng minh rằng:
a, OM=ON
b, 1/AB + 1/CD = 2/MN
Cho hình thang ABCD (AB // CD); hai đường chéo cắt nhau tại O. Qua O kẻ đường thẳng song song với AB cắt AD và BC lần lượt tại M và N. Chứng minh OM = ON
Ta có: MN // AB (gt); AB // CD(gt) => MN // AB // CD
Xét tam giác ABC có: OM // AB (MN // AB)
=> \(\dfrac{OM}{AB}=\dfrac{CM}{CA}\) (hệ quả định lý Ta lét trong tam giác) (1)
Xét tam giác ABD có: ON // AB (MN // AB)
=> \(\dfrac{ON}{AB}=\dfrac{DN}{DB}\) (hệ quả định lý Ta lét trong tam giác) (2)
Xét hình thang ABCD có: MN // AB // CD (cmt)
=> \(\dfrac{CM}{CA}=\dfrac{DN}{DB}\) (định lý Ta lét trong hình thang) (3)
Từ (1) (2) (3) => OM = ON
Trong ∆DAB có: \(\dfrac{MO}{AB}=\dfrac{DO}{DB}\) ( hệ quả Ta lét) (1)
Trong ∆CAB có: \(\dfrac{NO}{AB}=\dfrac{CO}{AC}\) ( hệ quả Ta lét) (2)
Trong ∆OAB có: \(\dfrac{CO}{CA}=\dfrac{DO}{DB}\) ( hệ quả Ta lét) (3)
từ (1), (2), (3) => \(\dfrac{MO}{AB}=\dfrac{NO}{AB}\) =>\(MO=NO\)
cho hình thang ABCD (AB//CD) 2 đường chéo AC và BD cắt nhau tại O. Qua O kẻ đường thẳng song song với AB cắt AD và BC lần lượt tại M và N a/ CM OM= ON,
b/CM 1/AB+!/CD=2/MN
Giúp mik với ạ mik cần gấp!!!
cho hình thang abcd(ab//cd) có 2 đường chéo cắt nhau tại O. đương thẳng qua O và song song với đáy ab cắt cạnh bên ad,bc theo thứ tự ở M và N
a, c/m: OM=ON
b,c/m rằng \(\frac{ }{\frac{1}{AB}+\frac{1}{CD}=\frac{2}{MN}}\)
c, biết Sabc=2008\(^2\) . tính Sabcd
cm cho om\(\frac{OM}{CD}\)=\(\frac{ON}{CD}\)
cho hình thang ABCD (AB//CD) có 2 đường chéo cắt nhau tại O .Đường thẳng qua O và song song với đáy AB cắt AD,BC, theo thứ tự tại M,N
Chứng minh rằng \(\frac{1}{AB}+\frac{1}{CD}=\frac{2}{MN}\)
BẠN DÙNG ĐỊNH LÝ TA-LÉT ĐỂ C/M OM=ON
Vì OM // AB & OM // CD nên
\(\frac{OM}{AB}=\frac{DM}{AD}\&\frac{OM}{CD}=\frac{AM}{AD}\)
\(\Rightarrow\frac{OM}{AB}+\frac{OM}{CD}=\frac{DM}{AD}+\frac{AM}{AD}\)
\(\Leftrightarrow OM\left(\frac{1}{AB}+\frac{1}{CD}\right)=\frac{DM+AM}{AD}\)
\(\Leftrightarrow\frac{1}{AB}+\frac{1}{CD}=\frac{1}{OM}\)(1)
TƯƠNG TỰ \(\frac{1}{AB}+\frac{1}{CB}=\frac{1}{ON}\)(2)
CỘNG VẾ VỚI VẾ CỦA (1) VÀ (2) TA CÓ:
\(2\left(\frac{1}{AB}+\frac{1}{CD}\right)=\frac{1}{OM}+\frac{1}{ON}\)MÀ OM=ON(C/M TRÊN) NÊN MN=2.OM
\(\Rightarrow2\left(\frac{1}{AB}+\frac{1}{CD}\right)=\frac{1}{OM}+\frac{1}{OM}=\frac{2}{OM}\)
\(\Leftrightarrow\frac{1}{AB}+\frac{1}{CD}=\frac{2}{2.OM}=\frac{2}{MN}\left(ĐPCM\right)\)
Mình mới học lớp 5 thôi nên chỉ vẽ hình thôi à! Thông cảm nha!
Hình như sau:
Thấy đúng thì !
\(\frac{1}{AB}+\frac{1}{CD}=\frac{2}{MN}\Leftrightarrow\frac{MN}{AB}+\frac{MN}{CD}=2\)
Do M0//AB=>\(\frac{MO}{AB}=\frac{MD}{AD}\)
Do MO//CD=>\(\frac{MO}{CD}=\frac{AM}{AD}\)
=>\(\frac{MO}{AB}+\frac{MO}{CD}=\frac{MD}{AD}+\frac{AM}{AD}=1\)
Tương tự ta có \(\frac{NO}{AB}+\frac{NO}{CD}=\frac{BN}{BC}+\frac{CN}{BC}=1\)
Suy ra \(\frac{MO}{AB}+\frac{MO}{CD}+\frac{NO}{AB}+\frac{NO}{CD}=\frac{MN}{AB}+\frac{MN}{CD}=1+1=2\left(ĐPCM\right)\)
Bài 7 (2) :Cho hình thang ABCD (AB//CD) ; hai đường chéo cắt nhau tại O. Qua O kẻ đường thẳng song song với AB cắt AD và BC lần lượt tại M và N . Chứng minh OM = ON
Xét △ADC có :MO // DC
\(\Rightarrow\frac{MO}{DC}=\frac{AO}{AC}\)(Hệ quả định lí Thales) (1)
Xét △BDC có : ON // DC
\(\Rightarrow\frac{NO}{DC}=\frac{BO}{BD}\)(Hệ quả định lí Thales) (2)
Xét △ODC có AB // DC
\(\Rightarrow\frac{AO}{AC}=\frac{BO}{BD}\)(Theo hệ quả định lí Thales) (3)
Từ (1) ; (2) và (3) :
\(\Rightarrow\frac{OM}{CD}=\frac{ON}{CD}\)
\(\Rightarrow OM=ON\left(ĐPCM\right)\)