GPT :
\(\sqrt[4]{2x^3+x^2-2x+8}+\sqrt[4]{3x^3+x^2-2x+10}=2\sqrt[4]{x^2-2x+4}\)
Gpt : a) \(\sqrt{x-1}+\sqrt{x+3}+2\sqrt{\left(x-1\right)\left(x^2-3x+5\right)}=4-2x\)
b) \(\sqrt[4]{1-x}+\sqrt[4]{2-x}=\sqrt[4]{3-2x}\)
c) \(\sqrt{x+1}+\sqrt{x+10}=\sqrt{x+2}+\sqrt{x+5}\)
Với Kho Đề đã được cập nhật, hiện tại Đáp Án Chi Tiết môn TOÁN Kỳ thi THPT quốc gia đã có trên Ứng Dụng. Các bạn tha hồ kiểm tra đối chiếu với bài làm của mình rồi nhé Tải ngay App về để xem đáp án chi tiết nào: https://giaingay.com.vn/downapp.html
Tải app giải toán và kết bạn trao đổi nào cả nhà: https://www.facebook.com/watch/?v=485078328966618
Với Kho Đề đã được cập nhật, hiện tại Đáp Án Chi Tiết môn TOÁN Kỳ thi THPT quốc gia đã có trên Ứng Dụng. Các bạn tha hồ kiểm tra đối chiếu với bài làm của mình rồi nhé Tải ngay App về để xem đáp án chi tiết nào: https://giaingay.com.vn/downapp.html
6) \(\sqrt{x^2+12x+36}=-x-6\)
7) \(\sqrt{9x^2-12x+4}=3x-2\)
8) \(\sqrt{16-24x+9x^2}=2x-10\)
9) \(\sqrt{x^2-6x+9}==2x-3\)
10) \(\sqrt{x^2-3x+\dfrac{9}{4}}=\dfrac{3}{x}x-4\)
6) ĐKXĐ: \(x\le-6\)
\(\sqrt{\left(x+6\right)^2}=-x-6\Leftrightarrow\left|x+6\right|=-x-6\)
\(\Leftrightarrow x+6=x+6\left(đúng\forall x\right)\)
Vậy \(x\le-6\)
7) ĐKXĐ: \(x\ge\dfrac{2}{3}\)
\(pt\Leftrightarrow\sqrt{\left(3x-2\right)^2}=3x-2\Leftrightarrow\left|3x-2\right|=3x-2\)
\(\Leftrightarrow3x-2=3x-2\left(đúng\forall x\right)\)
Vậy \(x\ge\dfrac{2}{3}\)
8) ĐKXĐ: \(x\ge5\)
\(pt\Leftrightarrow\sqrt{\left(4-3x\right)^2}=2x-10\)\(\Leftrightarrow\left|4-3x\right|=2x-10\)
\(\Leftrightarrow4-3x=10-2x\Leftrightarrow x=-6\left(ktm\right)\Leftrightarrow S=\varnothing\)
9) ĐKXĐ: \(x\ge\dfrac{3}{2}\)
\(pt\Leftrightarrow\sqrt{\left(x-3\right)^2}=2x-3\Leftrightarrow\left|x-3\right|=2x-3\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=2x-3\left(x\ge3\right)\\x-3=3-2x\left(\dfrac{3}{2}\le x< 3\right)\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=2\left(tm\right)\end{matrix}\right.\)
gpt : a) \(\frac{5x}{\sqrt{4-x^2}}+\frac{8}{x^2}+\frac{2x}{4-x^2}+\frac{5\sqrt{4-x^2}}{x}+4=0\)
b) \(\frac{2x}{\sqrt{8x^2+25}}+\frac{125}{x^2}-14=0\)
c) \(\left(x^3-3x+2\right)\sqrt{3x-2}-2x^3+6x^2-4x=0\)
d) \(\sqrt{x^2-x+6}+\frac{4}{x-1}=x^2+x\)
Akai Haruma, No choice teen, Arakawa Whiter, HISINOMA KINIMADO, tth, Nguyễn Việt Lâm, Phạm Hoàng Lê Nguyên, @Nguyễn Thị Ngọc Thơ
Mn giúp em vs ạ! Thanks trước!
\(c,\left(x^3-3x+2\right)\sqrt{3x-2}-2x^3+6x^2-4x=0\)
\(\Rightarrow\left(x+2\right)\left(x-1\right)^2\sqrt{3x-2}-2x\left(x^2-3x+2\right)=0\)
\(\Rightarrow\left(x+2\right)\left(x-1\right)^2\sqrt{3x-2}-2x\left(x-1\right)\left(x-2\right)=0\)
\(\Rightarrow x=1\)
Hoặc là: \(\Rightarrow\left(x+2\right)\left(x-1\right)\sqrt{3x-2}-2x\left(x-2\right)=0\)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Còn cần nữa không, hôm bữa chị giải ra câu a mà quên béng mất, mấy hôm lại bận làm thuyết trình Tiếng Anh nên bỏ dở.
Giờ mà cần chị cũng chỉ làm được câu a thôi '-'
Giải phương trình:
1. \(5x^2+2x+10=7\sqrt{x^4+4}\)
2. \(\dfrac{4}{x}+\sqrt{x-\dfrac{1}{x}}=x+\sqrt{2x-\dfrac{5}{x}}\)
3. \(\sqrt{x^2+2x}=\sqrt{3x^2+4x+1}-\sqrt{3x^2+4x+1}\)
a) \(\sqrt{x-3}-\sqrt{10-x}\)
b) \(\sqrt{x+4}+\dfrac{2-X}{x^2-16}\)
c) \(\dfrac{\sqrt{2x-3}}{\sqrt{x-4}}\)
d) \(\dfrac{\sqrt{2x-1}}{3x+2}\)
e) \(\dfrac{-2}{\sqrt{x^2+2x+2}}\)
a) ĐKXĐ: \(3\le x\le10\)
b) ĐKXĐ: \(\left\{{}\begin{matrix}x>-4\\x\ne4\end{matrix}\right.\)
c) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\x\ne4\end{matrix}\right.\)
d) ĐKXĐ: \(x\ge\dfrac{1}{2}\)
e) ĐKXĐ: \(x\in R\)
1)\(\sqrt{4+2x-x^2}=x-2\)
2)\(\sqrt{25-x^2}=x-1\)
3)(x+4).\(\sqrt{10-x^2}=x^2+2x-8\)
4)(x-3).\(\sqrt{x^2-3x+2}=x^2-8x+15\)
5)\(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x-6\sqrt{x-1}+8}=1\)
6)\(\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2-\sqrt{2x-5}}=2\sqrt{2}\)
7)\(^{x^2+x-2\sqrt{x+1}+2=0}\)
8)x-4\(\sqrt{2x+4}-2\sqrt{1-x}+10=0\)
1.
ĐK: $-x^2+2x+4\geq 0$
PT \(\Rightarrow \left\{\begin{matrix} x-2\geq 0\\ 4+2x-x^2=(x-2)^2=x^2-4x+4\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x\geq 2\\ 6x=2x^2\end{matrix}\right.\Rightarrow x=3\) (thỏa mãn)
Vậy...........
2)
ĐK: $-5\leq x\leq 5$
PT \(\Rightarrow \left\{\begin{matrix} x-1\geq 0\\ 25-x^2=(x-1)^2=x^2-2x+1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 1\\ 2x^2-2x-24=0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x\geq 1\\ x^2-x-12=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 1\\ (x+3)(x-4)=0\end{matrix}\right.\)
\(\Rightarrow x=4\) (thỏa mãn)
3)
ĐK: $x^2\leq 10$
PT $\Leftrightarrow (x+4)\sqrt{10-x^2}=(x+4)(x-2)$
$\Leftrightarrow (x+4)[\sqrt{10-x^2}-(x-2)]=0$
Nếu $x+4=0\Rightarrow x=-4$ (không thỏa mãn ĐKXĐ)
Nếu $\sqrt{10-x^2}-(x-2)=0$
$\Leftrightarrow \sqrt{10-x^2}=x-2$
\(\Rightarrow \left\{\begin{matrix} x-2\geq 0\\ 10-x^2=(x-2)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 2\\ 2x^2-4x-6=0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x\geq 0\\ 2(x-3)(x+1)=0\end{matrix}\right.\Rightarrow x=3\)
Giải các phương trình sau:
1) \(\sqrt{3x^2+5x+8}-\sqrt{3x^2+5x+1}=1\)
2) \(x^2-2x-12+4\sqrt{\left(4-x\right)\left(2+x\right)}=0\)
3) \(3\sqrt{x}+\dfrac{3}{2\sqrt{x}}=2x+\dfrac{1}{2x}-7\)
4) \(\sqrt{x}-\dfrac{4}{\sqrt{x+2}}+\sqrt{x+2}=0\)
5)\(\left(x-7\right)\sqrt{\dfrac{x+3}{x-7}}=x+4\)
6) \(2\sqrt{x-4}+\sqrt{x-1}=\sqrt{2x-3}+\sqrt{4x-16}\)
7) \(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=\dfrac{x+3}{2}\)
Giúp mình với ajk, mink đang cần gấp
giải pt:
a,\(\left(13-4x\right)\sqrt{2x-3}+\left(4x-3\right)\sqrt{5-2x}=2+8\sqrt{-4x^2+16x-15}\)
b,\(\left(9x-2\right)\sqrt{3x-1}+\left(10-9x\right)\sqrt{3-3x}-4\sqrt{-9x^2+12x-3}=4\)
c, \(\left(6x-5\right)\sqrt{x+1}-\left(6x+2\right)\sqrt{x-1}+4\sqrt{x^2-1}=4x-3\)
GPT: \(\frac{2x^2+x}{\sqrt{2x^2+x+10}}+2=\sqrt{2x^2+x+4}\)
Lời giải:
ĐKXĐ:..........
PT \(\Leftrightarrow \frac{2x^2+x}{\sqrt{2x^2+x+10}}=\sqrt{2x^2+x+4}-2=\frac{2x^2+x}{\sqrt{2x^2+x+4}+2}\)
\(\Leftrightarrow (2x^2+x)\left(\frac{1}{\sqrt{2x^2+x+10}}-\frac{1}{\sqrt{2x^2+x+4}+2}\right)=0\)
Nếu $2x^2+x=0\Rightarrow x=0$ hoặc $x=-\frac{1}{2}$ (thỏa mãn)
Nếu \(\frac{1}{\sqrt{2x^2+x+10}}-\frac{1}{\sqrt{2x^2+x+4}+2}=0\Rightarrow \sqrt{2x^2+x+10}=\sqrt{2x^2+x+4}+2\)
\(\Leftrightarrow \frac{6}{\sqrt{2x^2+x+10}+\sqrt{2x^2+x+4}}=2\)
\(\Rightarrow \sqrt{2x^2+x+10}+\sqrt{2x^2+x+4}=3\)
Điều này vô lý do \(2x^2+x+10=x^2+(x+\frac{1}{2})^2+\frac{39}{4}>9\Rightarrow \sqrt{2x^2+x+10}>3\)
và $\sqrt{2x^2+x+4}>0$
Vậy........