Tìm x
a)5x - 24= 1 + 50
b)4 + 36 : 9 + x=54
a) 5x + 2x = 62 - 50
b) 5x + x = 150 : 2 + 3
c) 6x + x = 511 : 59 + 31
d) 5x + 3x = 36 : 33.4 + 12
4x + 2x = 68 – 219 : 216
https://hoc24.vn/cau-hoi/a-5x-2x-62-50b-5x-x-150-2-3c-6x-x-511-59-31d-5x-3x-36-334-124x-2x-68-219-216.2785429565572
a: \(\Leftrightarrow7x=35\)
hay x=5
b: \(\Leftrightarrow6x=78\)
hay x=13
Tìm x
a) x ∈ BC( 3,5 ) và x < 50
b) x ⋮ 4; x ⋮ 6 và x < 40
c) x ⋮ 12; x⋮ 15 và x < 130
a) \(x\in\left\{15;30;45\right\}\)
b) \(x\in\left\{12;24;36\right\}\)
c) \(x\in\left\{60;120\right\}\)
tìm x a) (8x+2) (1-3x)+(6x -1)(4x-10)=-50
b) (1 -4x)(x-1)+4(3x+2)(x+3)=38
c)5(2x+3)(x+2)- 2.(5x-4)(x-1)=75
hộ mk vs ạ
a: ta có: \(\left(8x+2\right)\left(1-3x\right)+\left(6x-1\right)\left(4x-10\right)=-50\)
\(\Leftrightarrow8x-24x^2+2-6x+24x^2-60x-4x+40=-50\)
\(\Leftrightarrow-62x=-92\)
hay \(x=\dfrac{46}{31}\)
b: ta có: \(\left(1-4x\right)\left(x-1\right)+4\left(3x+2\right)\left(x+3\right)=38\)
\(\Leftrightarrow x-1-4x^2+4x+4\left(3x^2+9x+2x+6\right)=38\)
\(\Leftrightarrow-4x^2+5x-1+12x^2+44x+24-38=0\)
\(\Leftrightarrow8x^2+49x-15=0\)
\(\text{Δ}=49^2-4\cdot8\cdot\left(-15\right)=2881\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-49-\sqrt{2881}}{16}\\x_2=\dfrac{-49+\sqrt{2881}}{16}\end{matrix}\right.\)
Bài 3: Tìm x
a) (2x+3)2−4x2=10
b) (x+1)2−(2+x)(x−2)=0
c) (5x−1)(1+5x)=25x2−7x+15
d) (4−x)2−16=0
e) 3x2−12x=0
g) x2−8x−3x+24=0
e: \(\Leftrightarrow3x\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
Chứng minh rằng:
a,7^6+7^5-4^4 CHIA HẾT cho 11
b, 10^9+10^8+10^7chia hết cho 222
c, 81^7-27^9-9^13 chia hết cho 45
d 24^54 x 54^24 : 2^10 chia hết cho 72^36
bạn lớp mấy rồi còn dùng web này nữa ko?
Bài 1: Tìm x, biết:
1) 24 ⋮ x; 36 ⋮x ; 150 ⋮ x và x lớnnhất. 3) x ∈ ƯC(54 ; 12) và x > -10 | 2) x∈ BC(6; 4) và 16 ≤ x ≤50. 4) x ⋮ 4; x ⋮ 5; x ⋮ 8 và -20 < x < 180 |
1: \(\Leftrightarrow x=UCLN\left(24;36;150\right)=6\)
2: \(\Leftrightarrow x\in\left\{24;48;72;...\right\}\)
mà 16<=x<=50
nên \(x\in\left\{24;48\right\}\)
3: \(\Leftrightarrow x\inƯ\left(6\right)\)
mà x>-10
nên \(x\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
4: \(\Leftrightarrow x\in BC\left(4;5;8\right)\)
\(\Leftrightarrow x\in\left\{...;-40;0;40;80;120;160;200;...\right\}\)
mà -20<x<180
nên \(x\in\left\{0;40;80;120;160\right\}\)
tìm x
a,\(\sqrt{3+\sqrt{x}}=4\)
b,\(\sqrt{x+3}=\sqrt{1-5x}\)
c,\(\sqrt{x^2+6x+9}=3x-1\)
a: Ta có: \(\sqrt{\sqrt{x}+3}=4\)
\(\Leftrightarrow\sqrt{x}+3=16\)
\(\Leftrightarrow\sqrt{x}=13\)
hay x=169
b: Ta có: \(\sqrt{x+3}=\sqrt{1-5x}\)
\(\Leftrightarrow x+3=1-5x\)
\(\Leftrightarrow6x=-2\)
hay \(x=-\dfrac{1}{3}\left(nhận\right)\)
a) \(\sqrt{3+\sqrt{x}}=4\left(đk:x\ge0\right)\)
\(\Leftrightarrow3+\sqrt{x}=16\Leftrightarrow\sqrt{x}=13\Leftrightarrow x=169\left(tm\right)\)
b) \(\sqrt{x+3}=\sqrt{1-5x}\left(đk:\dfrac{1}{5}\ge x\ge-3\right)\)
\(\Leftrightarrow x+3=1-5x\Leftrightarrow6x=-2\Leftrightarrow x=-\dfrac{1}{3}\left(ktm\right)\)
Vậy \(S=\varnothing\)
c) \(\sqrt{x^2+6x+9}=3x-1\left(đk:x\ge\dfrac{1}{3}\right)\)
\(\Leftrightarrow\sqrt{\left(x+3\right)^2}=3x-1\)
\(\Leftrightarrow\left|x+3\right|=3x-1\)
\(\Leftrightarrow x+3=3x-1\Leftrightarrow2x=4\Leftrightarrow x=2\left(tm\right)\)
a. \(\sqrt{3+\sqrt{x}}=4\) ĐKXĐ: \(x\ge0\)
<=> 3 + \(\sqrt{x}\) = 42
<=> \(3+\sqrt{x}=16\)
<=> \(\sqrt{x}=16-3\)
<=> \(\sqrt{x}=13\)
<=> x = 132
<=> x = 169 (TM)
b. \(\sqrt{x+3}=\sqrt{1-5x}\) ĐKXĐ: \(x\ge\dfrac{1}{5}\)
<=> \(\left(\sqrt{x+3}\right)^2=\left(\sqrt{1-5x}\right)^2\)
<=> \(|x+3|=|1-5x|\)
<=> \(\left[{}\begin{matrix}x+3=1-5x\\-\left(x+3\right)=-\left(1-5x\right)\\x+3=-\left(1-5x\right)\\-\left(x+3\right)=1-5x\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=\dfrac{-1}{3}\\x=\dfrac{-1}{3}\\x=1\\x=1\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=\dfrac{-1}{3}\\x=1\end{matrix}\right.\)
c. \(\sqrt{x^2+6x+9}=3x-1\)
<=> \(\sqrt{\left(x+3\right)^2}=3x-1\)
<=> \(|x+3|=3x-1\)
<=> \(\left[{}\begin{matrix}x+3=-\left(3x-1\right)\\x+3=3x-1\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x+3=-3x=1\\-2x=-4\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}4x=-2\\x=2\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=\dfrac{-1}{2}\\x=2\end{matrix}\right.\)
tìm x
(2x - 1)(x + 3) - 2x^2 + 5x = 7
(x + 3)( x ^2 - 3x + 9) - x(x -4) (x + 4) = 54
a, \(\left(2x-1\right)\left(x+3\right)-2x^2+5x=7\)
\(\Leftrightarrow2x^2+6x-x-3-2x^2+5x=7\)
\(\Leftrightarrow2x^2+5x-3-2x^2+5x=7\)
\(\Leftrightarrow10x-10=0\Leftrightarrow x=1\)
b, \(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x-4\right)\left(x+4\right)=54\)
\(\Leftrightarrow\left(x^3+27\right)-x\left(x^2-16\right)=54\)
\(\Leftrightarrow x^3+27-x^3+16x=54\)
\(\Leftrightarrow-27+16x=0\Leftrightarrow x=\frac{27}{16}\)
tim x
a) 4(2x+7)^2-9(x+3)^2=0
b) (5x^2-2x+10)^2=(3x^2+10x -8 )^2
c) (x-3)^2-4=0
d) x ^2-2x=24
a: Ta có: \(4\left(2x+7\right)^2-9\left(x+3\right)^2=0\)
\(\Leftrightarrow\left(4x+14-3x-9\right)\left(4x+14+3x+9\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(7x+23\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=-\dfrac{23}{7}\end{matrix}\right.\)
c: Ta có: \(\left(x-3\right)^2-4=0\)
\(\Leftrightarrow\left(x-5\right)\cdot\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=1\end{matrix}\right.\)
b.
PT $\Leftrightarrow (5x^2-2x+10)^2-(3x^2+10x-8)^2=0$
$\Leftrightarrow (5x^2-2x+10-3x^2-10x+8)(5x^2-2x+10+3x^2+10x-8)=0$
$\Leftrightarrow (2x^2-12x+18)(8x^2+8x+2)=0$
$\Leftrightarrow (x^2-6x+9)(4x^2+4x+1)=0$
$\Leftrightarrow (x-3)^2(2x+1)^2=0$
$\Leftrightarrow (x-3)(2x+1)=0$
$\Leftrightarrow x-3=0$ hoặc $2x+1=0$
$\Leftrightarrow x=3$ hoặc $x=-\frac{1}{2}$
d.
$x^2-2x=24$
$\Leftrightarrow x^2-2x-24=0$
$\Leftrightarrow (x+4)(x-6)=0$
$\Leftrightarrow x+4=0$ hoặc $x-6=0$
$\Leftrightarrow x=-4$ hoặc $x=6$