Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
D.Khánh Đỗ
Xem chi tiết
lili
29 tháng 1 2020 lúc 16:51

Áp dụng bđt Cauchy schwarz:

=> 1/x+1/y+4/z+16/t >= [(1+1+2+4)^2] / x+y+z+t=8^2/(x+y+z+t)=64/1=64

=> đpcm.

Khách vãng lai đã xóa
Kiệt Nguyễn
29 tháng 1 2020 lúc 16:52

Áp dụng BĐT Svac - xơ:

\(\frac{1}{x}+\frac{1}{y}+\frac{4}{z}+\frac{16}{t}\ge\frac{\left(1+1+2+4\right)^2}{x+y+z+t}=\frac{64}{1}=64\)

(Dấu "="\(\Leftrightarrow x=y=\frac{1}{22};z=\frac{2}{11};t=\frac{8}{11}\))

Khách vãng lai đã xóa
Inequalities
29 tháng 1 2020 lúc 16:56

Sửa)):

(Dấu "="\(\Leftrightarrow x=y=\frac{1}{16};z=\frac{1}{4};t=1\))

Khách vãng lai đã xóa
Nguyen Thuy Linh
Xem chi tiết
Thành Vinh Lê
7 tháng 5 2018 lúc 22:18

nhân cả 2 vế với 2 rồi bunhia

Nguyen Thuy Linh
6 tháng 4 2018 lúc 21:14

câu c là \(\dfrac{1}{2}\)(x+y+z) nhé, mih chép nhầm

Ngọc Anh
Xem chi tiết
nguyễn lý thảo vân
21 tháng 1 2016 lúc 22:06

sai đề!!!! Chả bao h có kiểu đề bài ngu người thế này. CMR cái gì cơ? câu hỏi mất đuôi :v

:vvv
Xem chi tiết
Akai Haruma
13 tháng 3 2021 lúc 14:32

Thay $x=\sqrt{\frac{1}{2,5}}; y=z=\sqrt{\frac{1}{0,25}}$ ta thấy đề sai bạn nhé!

trần vũ hoàng phúc
Xem chi tiết
Nguyễn Thị Nguyệt Ánh
Xem chi tiết
Akai Haruma
29 tháng 5 2020 lúc 0:08

Bài 1:

Áp dụng BĐT Bunhiacopxky ta có:

\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)(x+y+z)\geq (1+1+1)^2\)

\(\Leftrightarrow A.1\geq 9\Leftrightarrow A\geq 9\)

Vậy GTNN của $A$ là $9$. Giá trị này đạt được tại $x=y=z=\frac{1}{3}$

Akai Haruma
29 tháng 5 2020 lúc 0:08

Bài 2:

Hoàn toàn tương tự bài 1

$S(a+b+c)\geq (1+1+1)^2$ theo BĐT Bunhiacopxky

$\Leftrightarrow S.3\geq 9\Rightarrow S\geq 3$

Vậy GTNN của $S$ là $3$ khi $a=b=c=1$

Akai Haruma
29 tháng 5 2020 lúc 0:11

Bài 3:

Áp dụng BĐT Bunhiacopxky như các bài trên ta có:

$\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{9}{x+y+z}$

Mà $0< x+y+z\leq 6$ nên $\frac{9}{x+y+z}\geq \frac{9}{6}=\frac{3}{2}$

Do đó $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{3}{2}$ (đpcm)

Dấu "=" xảy ra khi $x=y=z=2$

Bài 4:

Áp dụng BĐT Cô-si cho các số dương ta có:

$a^4+b^4+c^4+d^4\geq 4\sqrt[4]{a^4b^4c^4d^4}=4abcd$ (đpcm)

Dấu "=" xảy ra khi $a=b=c=d>0$

Nguyễn Thiều Công Thành
Xem chi tiết
Tuyển Trần Thị
4 tháng 11 2017 lúc 13:06

vì x+y+z=1nên

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\)\(\frac{x+y+z}{x}+\frac{x+y+z}{y}+\frac{x+y+z}{z}\)\(=3+\left(\frac{x}{y}+\frac{y}{z}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)\)=\(3+\frac{x^2+y^2}{xy}+\frac{y^2+z^2}{yz}+\frac{x^2+z^2}{xz}\)

nen \(\frac{xy}{x^2+y^2}+\frac{yz}{y^2+z^2}+\frac{xz}{x^2+z^2}+\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\) =\(\left(\frac{xy}{x^2+y^2}+\frac{x^2+y^2}{4xy}\right)+\left(\frac{yz}{y^2+z^2}+\frac{y^2+z^2}{4yz}\right)+\left(\frac{xz}{x^2+z^2}+\frac{x^2+z^2}{xz}\right)+\frac{3}{4}\)

\(\ge2.\frac{1}{2}+\frac{2.1}{2}+\frac{2.1}{2}+\frac{3}{4}=\frac{15}{4}\)(dpcm)

dau = xay ra khi x=y=z=1/3

N.T.M.D
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 5 2021 lúc 17:14

\(VT=\dfrac{1}{z}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\ge\dfrac{1}{z}\left(\dfrac{4}{x+y}\right)=\dfrac{4}{z\left(x+y\right)}\ge\dfrac{16}{\left(z+x+y\right)^2}\ge16\) (đpcm)

Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(\dfrac{1}{4};\dfrac{1}{4};\dfrac{1}{2}\right)\)

Kresol♪
Xem chi tiết
Nguyễn Việt Lâm
17 tháng 12 2020 lúc 10:31

Với mọi x;y;z ta luôn có:

\(\left(x+y-1\right)^2+\left(z-\dfrac{1}{2}\right)^2\ge0\)

\(\Leftrightarrow x^2+y^2+2xy-2x-2y+1+z^2-z+\dfrac{1}{4}\ge0\)

\(\Leftrightarrow x^2+y^2+z^2+\dfrac{5}{4}+2xy-2x-2y-z\ge0\)

\(\Leftrightarrow2+2xy-2x-2y\ge z\)

\(\Leftrightarrow2\left(1-x\right)\left(1-y\right)\ge z\)

Dấu "=" xảy ra khi và chỉ khi \(x=y=z=\dfrac{1}{2}\)