\(\text{Tính S=1^2+2^2+3^2+ ... +99^2+100}^2=?\)
Tính tổng sau S= 5/(1*2)+13/(2*3)+...+198011/(99*100)
Tính
1) S=1-2+3-4+......+99-100
2) P=2-4+6-8+........+98-100
3) Q=(-1)+2+(-3)+.......+(-99)+100
tính \(s=1^2+2^2+3^2+...+99^2+100^2\)
Tham khảo
S =12 + 22 + 32 +......+ 992 + 1002
= 1 + 2.(1 + 1) + 3.(1 + 2) + ... + 99.(1 + 98) + 100.(99 + 1)
= 1 + 2.1 + 2 + 3.1 + 3.2 +... + 99.1 + 99.98 + 100.99 + 100.1
= (2.1 + 2.3 + ... + 99.99 ) + (1 + 2 + 3 + ... + 99 + 100)
= 333300 + 5050
= 338350
\(S=1^2+2^2+3^2+...+99^2+100^2\)
\(=1.1+2.2+3.3+...+100.100\)
\(=1\left(2-1\right)+2\left(3-1\right)+3\left(4-1\right)+...+100\left(101-1\right)\)
\(=\left[1.2-1+2.3-1.1+3.4-3+1+...+100.101-100.1\right]\)
\(=\left[1.2+2.3+3.4+...+100.101\right]-\left(1+2+3+...+100\right)\)
\(=\dfrac{100.101.102}{3}-\dfrac{100.101}{2}\)
\(\dfrac{100.101.\left(2.100+1\right)}{6}=338350\)
\(\text{Tính tổng : }S=1-2+3-4+5-6+......+99-100.\text{Ta được S=?}\)
1.Tính tổng S=1/3+1/32+1/33+1/34+.....+1/399+1/3100
2.Tính tổng S=1+1/2+1/22+1/23+1/24+.....+1/299+1/2100
1.Tính tổng S=1/3+1/32+1/33+1/34+.....+1/399+1/3100
2.Tính tổng S=1+1/2+1/22+1/23+1/24+.....+1/299+1/2100
Tính tổng sau: \(S=\dfrac{1}{2+\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+\dfrac{1}{4\sqrt{3}+3\sqrt{4}}+...+\dfrac{1}{100\sqrt{99}+99\sqrt{100}}\)
Ta có: \(S=\dfrac{1}{2+\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+\dfrac{1}{4\sqrt{3}+3\sqrt{4}}+...+\dfrac{1}{100\sqrt{99}+99\sqrt{100}}\)
\(=1-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{99}}-\dfrac{1}{10}\)
\(=1-\dfrac{1}{10}=\dfrac{9}{10}\)
tính :\(\frac{\text{101+100+99+98+...+3+2+1}}{\text{101-100+99-98+...+3-2+1}}\)
mình đang cần gấp , ai làm nhanh mình tick cho
\(\frac{101+100+99+98+...+3+2+1}{101-100+99-98+...+3-2+1}\)
\(=\frac{\frac{101.102}{2}}{51}\)
\(=101\)
Tính S = 1^2 + 2^2 + 3^2 + ..... + 99^2 + 100^2