Cho x,y,z là các số thực dương thỏa mãn x>=z. CMR:
\(\frac{xz}{y^2+yz}+\frac{y^2}{xz+yz}+\frac{x+2z}{x+z}\ge\frac{5}{2}\)
Đặt \(H=\frac{xz}{y^2+yz}+\frac{y^2}{zx+yz}+\frac{x+2z}{x+z}\)
\(=\frac{1}{\frac{y^2}{xz}+\frac{yz}{xz}}+\frac{1}{\frac{zx}{y^2}+\frac{yz}{y^2}}+\frac{x+z+z}{x+z}\)
\(=\frac{1}{\frac{y^2}{zx}+\frac{y}{x}}+\frac{1}{\frac{zx}{y^2}+\frac{z}{y}}+\frac{1}{\frac{x}{z}+1}+1\)
Đặt \(\frac{x}{y}=a;\frac{y}{z}=b\Rightarrow ab=\frac{x}{z}\ge1\)
Khi đó \(H=\frac{1}{\frac{b}{a}+\frac{1}{a}}+\frac{1}{\frac{a}{b}+\frac{1}{b}}+\frac{1}{ab+1}+1\)
\(=\frac{a}{b+1}+\frac{b}{a+b}+\frac{1}{ab+1}+1\)
Ta cần chứng minh \(U=\frac{a}{b+c}+\frac{b}{a+b}+\frac{1}{ab+1}\ge\frac{3}{2}\)
\(\Leftrightarrow\left(\frac{a}{b+1}+1\right)+\left(\frac{b}{a+1}+1\right)+\frac{1}{ab+1}\ge\frac{7}{2}\)
\(\Leftrightarrow\frac{a+b+1}{b+1}+\frac{a+b+1}{a+1}+\frac{1}{ab+1}\ge\frac{7}{2}\)
\(\Leftrightarrow\left(a+b+1\right)\left(\frac{1}{b+1}+\frac{1}{a+1}\right)+\frac{1}{ab+1}\ge\frac{7}{2}\)
Khi đó \(Y=\left(a+b+1\right)\left(\frac{1}{a+1}+\frac{1}{b+1}\right)+\frac{1}{ab+1}\)
\(\ge\left(a+b+1\right)\cdot\frac{4}{a+b+2}+\frac{1}{ab+1}\)
\(\ge\frac{4\left(a+b+1\right)}{a+b+2}+\frac{1}{\frac{\left(a+b\right)^2}{4}+1}\)
Đặt \(t=a+b\ge2\sqrt{ab}\ge2\)
Ta cần chứng minh \(\frac{4\left(t+1\right)}{t+2}+\frac{1}{\frac{t^2}{4}+1}\ge\frac{7}{2}\)
\(\Leftrightarrow\frac{\left(t-2\right)^3}{2\left(t+2\right)\left(t^2+4\right)}\ge0\) ( đúng )
Vậy ta có đpcm.
ta có:
\(\frac{xz}{y^2+yz}+\frac{y^2}{xz+yz}+\frac{z+2z}{z+x}=\frac{\frac{xz}{yz}}{\frac{y^2}{yz}+1}+\frac{\frac{y^2}{yz}}{\frac{xz}{yz}+1}+\frac{1+\frac{2z}{x}}{1+\frac{z}{x}}\)\(=\frac{\frac{x}{y}}{\frac{y}{z}+1}+\frac{\frac{y}{z}}{\frac{x}{y}+1}+\frac{1+\frac{2z}{x}}{1+\frac{z}{x}}=\frac{a^2}{b^2+1}+\frac{b^2}{a^2+1}+\frac{1+2c^2}{1+c^2}\)
trong đó \(a^2=\frac{x}{y};b^2=\frac{y}{z};c^2=\frac{z}{x}\left(a;b;c>0\right)\)
Nhận xét rằng \(a^2\cdot b^2=\frac{x}{z}=\frac{1}{c^2}\ge1\)(do x>=z)
Xét \(\frac{a^2}{b^2+1}+\frac{b^2}{a^2+1}+\frac{c^2}{ab+1}\)\(=\frac{a^2\left(a^2+1\right)\left(ab+1\right)+b^2\left(b^2+1\right)\left(ab+1\right)-2aba^2\left(a^2+1\right)\left(b^2+1\right)}{\left(a^2+1\right)\left(b^2+1\right)\left(ab+1\right)}\)
\(=\frac{ab\left(a^2-b^2\right)+\left(a-b\right)\left(a^3-b^3\right)+\left(a-b\right)^2}{\left(a^2+1\right)\left(b^2+1\right)\left(ab+1\right)}\ge0\)
Do đó: \(\frac{a^2}{b^2+1}+\frac{b^2}{a^2+1}\ge\frac{2ab}{ab+1}=\frac{\frac{2}{c}}{\frac{1}{c}+1}=\frac{2}{1+c}\left(1\right)\)đẳng thức xảy ra <=> a=b
khi đó:
\(\frac{2}{1+c}+\frac{1+2c^2}{c^2+1}-\frac{5}{2}=\frac{2\left[2\left(1+c^2\right)+\left(1+c\right)\left(1+2c^2\right)\right]-5\left(1+c\right)\left(1+c^2\right)}{2\left(1+c\right)\left(1+c^2\right)}\)
\(=\frac{1-3c+3c^2-c^3}{2\left(1+c\right)\left(1+c^2\right)}=\frac{\left(1-c\right)^3}{2\left(1+c\right)\left(1+c^2\right)}\ge0\)(do c=<1) (2)
Từ (1) và (2) => đpcm
Đẳng thức xảy ra <=> a=b, c=1 <=> x=y=z
1) Cho x,y,z>0 thoả mãn : xyz<=1. Chứng minh rằng: \(\frac{x\left(1-y^3\right)}{y^3}\)+ \(\frac{y\left(1-z^3\right)}{z^3}\)+\(\frac{z\left(1-x^3\right)}{x^3}\)>=0
2) Cho x, y, z là các số thực dương thỏa mãn x ≥ z. CMR: xz /(y^2 + yz) + y^2 / (xz + yz) + (x + 2z)/(x + z) ≥ 5/2
Cho x,y,z là các số thực dương thỏa mãn x>=z. CMR:
\(\frac{xz}{y^2+yz}+\frac{y^2}{xz+yz}+\frac{x+2z}{x+z}\ge\frac{5}{2}\)
Giờ mình lội lại noti mới nhìn thấy bài tag. Không biết bạn còn cần không nhưng mình vẫn post lời giải để mọi người tham khảo:
Ta có:
\(\frac{xz}{y^2+yz}+\frac{y^2}{xz+yz}+\frac{x+2z}{x+z}=\frac{xz}{y^2+yz}+\frac{y^2}{xz+yz}+\frac{z}{x+z}+1\)
\(=\frac{1}{\frac{y^2}{xz}+\frac{y}{x}}+\frac{1}{\frac{xz}{y^2}+\frac{z}{y}}+\frac{1}{\frac{x}{z}+1}+1\)
Đặt \((\frac{x}{y}, \frac{y}{z})=(a,b)\Rightarrow ab=\frac{x}{z}\geq 1\) do $x\ge z$
BĐT cần CM trở thành:
\(\frac{1}{\frac{b}{a}+\frac{1}{a}}+\frac{1}{\frac{a}{b}+\frac{1}{b}}+\frac{1}{ab+1}+1\geq \frac{5}{2}\)
\(\Leftrightarrow \frac{a}{b+1}+\frac{b}{a+1}+\frac{1}{ab+1}+1\geq \frac{5}{2}\)
\(\Leftrightarrow \frac{a+b+1}{b+1}+\frac{b+a+1}{a+1}+\frac{1}{ab+1}\geq \frac{7}{2}(*)\)
Đăt \(P=\frac{a+b+1}{b+1}+\frac{b+a+1}{a+1}+\frac{1}{ab+1}\). Áp dụng BĐT Cauchy-Schwarz và AM-GM ta có:
\(P\geq (a+b+1).\frac{4}{b+1+a+1}+\frac{1}{(\frac{a+b}{2})^2+1}=\frac{4(a+b+1)}{a+b+2}+\frac{4}{(a+b)^2+4}(1)\)
Đặt \(t=a+b\). Theo BĐT AM-GM \(t=a+b\geq 2\sqrt{ab}\geq 2\sqrt{1}=2\)
Xét hiệu:
\(\frac{4(a+b+1)}{a+b+2}+\frac{4}{(a+b)^2+4}-\frac{7}{2}=\frac{4(t+1)}{t+2}+\frac{4}{t^2+4}-\frac{7}{2}\)
\(=\frac{t^3-6t^2+12t-8}{2(t+2)(t^2+4)}=\frac{(t-2)^3}{2(t+2)(t^2+4)}\geq 0, \forall t\geq 2\)
\(\Rightarrow \frac{4(a+b+1)}{a+b+2}+\frac{4}{(a+b)^2+4}\geq \frac{7}{2}(2)\)
Từ \((1);(2)\Rightarrow P\geq \frac{7}{2}\). BĐT $(*)$ đúng, ta có đpcm.
Dấu "=" xảy ra khi $x=y=z$
Giờ mình lội lại noti mới nhìn thấy bài tag. Không biết bạn còn cần không nhưng mình vẫn post lời giải để mọi người tham khảo:
Ta có:
\(\frac{xz}{y^2+yz}+\frac{y^2}{xz+yz}+\frac{x+2z}{x+z}=\frac{xz}{y^2+yz}+\frac{y^2}{xz+yz}+\frac{z}{x+z}+1\)
\(=\frac{1}{\frac{y^2}{xz}+\frac{y}{x}}+\frac{1}{\frac{xz}{y^2}+\frac{z}{y}}+\frac{1}{\frac{x}{z}+1}+1\)
Đặt \((\frac{x}{y}, \frac{y}{z})=(a,b)\Rightarrow ab=\frac{x}{z}\geq 1\) do $x\ge z$
BĐT cần CM trở thành:
\(\frac{1}{\frac{b}{a}+\frac{1}{a}}+\frac{1}{\frac{a}{b}+\frac{1}{b}}+\frac{1}{ab+1}+1\geq \frac{5}{2}\)
\(\Leftrightarrow \frac{a}{b+1}+\frac{b}{a+1}+\frac{1}{ab+1}+1\geq \frac{5}{2}\)
\(\Leftrightarrow \frac{a+b+1}{b+1}+\frac{b+a+1}{a+1}+\frac{1}{ab+1}\geq \frac{7}{2}(*)\)
Đăt \(P=\frac{a+b+1}{b+1}+\frac{b+a+1}{a+1}+\frac{1}{ab+1}\). Áp dụng BĐT Cauchy-Schwarz và AM-GM ta có:
\(P\geq (a+b+1).\frac{4}{b+1+a+1}+\frac{1}{(\frac{a+b}{2})^2+1}=\frac{4(a+b+1)}{a+b+2}+\frac{4}{(a+b)^2+4}(1)\)
Đặt \(t=a+b\). Theo BĐT AM-GM \(t=a+b\geq 2\sqrt{ab}\geq 2\sqrt{1}=2\)
Xét hiệu:
\(\frac{4(a+b+1)}{a+b+2}+\frac{4}{(a+b)^2+4}-\frac{7}{2}=\frac{4(t+1)}{t+2}+\frac{4}{t^2+4}-\frac{7}{2}\)
\(=\frac{t^3-6t^2+12t-8}{2(t+2)(t^2+4)}=\frac{(t-2)^3}{2(t+2)(t^2+4)}\geq 0, \forall t\geq 2\)
\(\Rightarrow \frac{4(a+b+1)}{a+b+2}+\frac{4}{(a+b)^2+4}\geq \frac{7}{2}(2)\)
Từ \((1);(2)\Rightarrow P\geq \frac{7}{2}\). BĐT $(*)$ đúng, ta có đpcm.
Dấu "=" xảy ra khi $x=y=z$
Nguyễn Thành Trương Ngân Vũ ThịAkai Haruma
cho các số thực dương x,y,z thỏa mãn xy=xz+yz. tìm giá trị nhỏ nhất
\(P=\frac{\text{4z(z^2-xy)-(x^2+y^2)(2z-x-y)}}{\left(x+y\right)z^2}\)
Cho x, y, z là các số thực dương thỏa mãn \(x\ge z\). CMR:
\(\dfrac{xz}{y^2+yz}+\dfrac{y^2}{xz+yz}+\dfrac{x+2z}{x+z}\ge\dfrac{5}{2}\)
lâu không tương tác xin 1 slot xem sao
Cho các số thực dương x,y,z thõa mãn \(\sqrt{xy}+\sqrt{xz}+\sqrt{yz}=\sqrt{xyz}\)
Tìm giá trị nhỏ nhất của biểu thức
P=\(\dfrac{1}{xyz}\left(x\sqrt{2y^2+yz+2z^2}+y\sqrt{2x^2+xz+2z^2}+z\sqrt{2y^2+xy+2x^2}\right)\)
\(gt\Leftrightarrow\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{z}}=1\)
\(P=\dfrac{1}{xyz}\left(x\sqrt{2y^2+yz+2z^2}+y\sqrt{2x^2+xz+2z^2}+z\sqrt{2y^2+xy+2x^2}\right)\)
\(=\dfrac{1}{xyz}\left(x\sqrt{\dfrac{5}{4}\left(y+z\right)^2+\dfrac{3}{4}\left(y-z\right)^2}+y\sqrt{\dfrac{5}{4}\left(x+z\right)^2+\dfrac{3}{4}\left(x-z\right)^2}+z\sqrt{\dfrac{5}{4}\left(x+y\right)^2+\dfrac{3}{4}\left(x-y\right)^2}\right)\)
\(\ge\dfrac{1}{xyz}\left[x.\dfrac{\sqrt{5}\left(z+y\right)}{2}+y.\dfrac{\sqrt{5}\left(x+z\right)}{2}+z.\dfrac{\sqrt{5}\left(x+y\right)}{2}\right]\)
\(=\dfrac{\sqrt{5}\left(z+y\right)}{2yz}+\dfrac{\sqrt{5}\left(x+z\right)}{2xz}+\dfrac{\sqrt{5}\left(x+y\right)}{2xy}\)
\(=\dfrac{\sqrt{5}}{3}\left(1+1+1\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge\dfrac{\sqrt{5}}{3}\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{z}}\right)^2=\dfrac{\sqrt{5}}{3}\) (bunhia)
Dấu = xảy ra khi \(x=y=z=9\)
Thấy : \(\sqrt{2y^2+yz+2z^2}=\sqrt{\dfrac{5}{4}\left(y+z\right)^2+\dfrac{3}{4}\left(y-z\right)^2}\ge\dfrac{\sqrt{5}}{2}\left(y+z\right)>0\)
CMTT : \(\sqrt{2x^2+xz+2z^2}\ge\dfrac{\sqrt{5}}{2}\left(x+z\right)\) ; \(\sqrt{2y^2+xy+2x^2}\ge\dfrac{\sqrt{5}}{2}\left(x+y\right)\)
Suy ra : \(P\ge\dfrac{1}{xyz}.\dfrac{\sqrt{5}}{2}\left[x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)\right]\)
\(\Rightarrow P\ge\sqrt{5}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)
Ta có : \(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}=\sqrt{xyz}\Leftrightarrow\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{z}}=1\)
Mặt khác : \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{z}}\right)^2}{3}=\dfrac{1}{3}\)
Suy ra : \(P\ge\dfrac{\sqrt{5}}{3}\)
" = " \(\Leftrightarrow x=y=z=9\)
Cho các số thực dương x, y, z thỏa mãn \(x^2+y^2+z^2=3\)
\(CMR:\frac{x}{\sqrt[3]{yz}}+\frac{y}{\sqrt[3]{xz}}+\frac{z}{\sqrt[3]{xy}}\ge xy+yz+xz\)
\(3=x^2+y^2+z^2\ge3\sqrt[3]{x^2y^2z^2}\)
\(\Rightarrow xyz\le1\)
\(\sqrt[3]{x^2}+\sqrt[3]{y^2}+\sqrt[3]{z^2}\le\frac{x^2+1+1}{3}+\frac{y^2+1+1}{3}+\frac{z^2+1+1}{3}=3\)
Ta co:
\(A=\frac{x}{\sqrt[3]{yz}}+\frac{y}{\sqrt[3]{xz}}+\frac{z}{\sqrt[3]{xy}}=\frac{x\sqrt[3]{x}}{\sqrt[3]{xyz}}+\frac{y\sqrt[3]{y}}{\sqrt[3]{xyz}}+\frac{z\sqrt[3]{z}}{\sqrt[3]{xyz}}\)
\(\ge x\sqrt[3]{x}+y\sqrt[3]{y}+z\sqrt[3]{z}\)
\(\Rightarrow3A\ge3\left(x\sqrt[3]{x}+y\sqrt[3]{y}+z\sqrt[3]{z}\right)\ge\left(x\sqrt[3]{x}+y\sqrt[3]{y}+z\sqrt[3]{z}\right)\left(\sqrt[3]{x^2}+\sqrt[3]{y^2}+\sqrt[3]{z^2}\right)\)
\(\ge\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\)
\(\Rightarrow A\ge xy+yz+zx\)
Áp dụng BĐT Cauchy - Schwarz, ta có: \(3\left(x^2+y^2+z^2\right)=\left(1^2+1^2+1^2\right)\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)
\(\Rightarrow x+y+z\le\sqrt{3\left(x^2+y^2+z^2\right)}=3=x^2+y^2+z^2\)(Do \(x^2+y^2+z^2=3\))
Ta có: \(\frac{x}{\sqrt[3]{yz}}+\frac{y}{\sqrt[3]{zx}}+\frac{z}{\sqrt[3]{xy}}=\frac{x}{\sqrt[3]{yz.1}}+\frac{y}{\sqrt[3]{zx.1}}+\frac{z}{\sqrt[3]{xy.1}}\)
\(\ge\frac{x}{\frac{y+z+1}{3}}+\frac{y}{\frac{z+x+1}{3}}+\frac{z}{\frac{x+y+1}{3}}\)\(=\frac{3x}{y+z+1}+\frac{3y}{z+x+1}+\frac{3z}{x+y+1}\)
\(=\frac{3x^2}{xy+zx+x}+\frac{3y^2}{yz+xy+y}+\frac{3z^2}{zx+yz+z}\)\(\ge\frac{3\left(x+y+z\right)^2}{2\left(xy+yz+zx\right)+\left(x+y+z\right)}\)(Theo BĐT Cauchy - Schwarz dạng Engle)
\(\ge\frac{3\left(x+y+z\right)^2}{2\left(xy+yz+zx\right)+x^2+y^2+z^2}=\frac{3\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=3=x^2+y^2+z^2\)
\(\ge xy+yz+zx\)
Đẳng thức xảy ra khi x = y = z = 1
\(\sqrt[3]{yz\cdot1}\le\frac{y+z+1}{3};\sqrt[3]{xz\cdot1}\le\frac{x+z+1}{3};\sqrt[3]{yx\cdot1}\le\frac{y+x+1}{3}\)
Nên \(A=\frac{x}{\sqrt[3]{yz}}+\frac{y}{\sqrt[3]{xz}}+\frac{z}{\sqrt[3]{xy}}\ge3\left(\frac{x}{y+z+1}+\frac{y}{x+z+1}+\frac{z}{y+x+1}\right)\)\(=3\left(\frac{x^2}{xy+yz+x}+\frac{y^2}{xy+yz+y}+\frac{z^2}{yz+xz+z}\right)=B\)
\(B\ge\frac{3\left(x+y+z\right)^2}{2\left(xy+yz+zx\right)+x+y+z}\ge\frac{3\left(x+y+z\right)^2}{2\left(xy+yz+zx\right)+x^2+y^2+z^2}=\frac{3\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=3\ge xy+yz+zx\)
do \(\left(x+y+z\right)^2\le3\left(x^2+y^2+z^2\right)=9\Rightarrow x+y+z\le3=x^2+y^2+z^2;xy+yz+zx\le x^2+y^2+z^2=3\)
cho x,y,z là các số thực thỏa mãn x2+y2+z2=1. tìm GTLN của bt M=2(xy+yz+xz)+(xy-xz)2+(yz-xy)2+(xz-yz)2
Cho các số dương x,y,z thỏa mãn điều kiện x+y+z = 2020
Tìm giá trị nhỏ nhất của biều thức \(T=\sqrt{2x^2+xy+2y^2}+\sqrt{2y^2+yz+2z^2}+\sqrt{2z^2+xz+2x^2}\)
Ta có:
\(2\left(2x^2+xy+2y^2\right)=3\left(x^2+y^2\right)+\left(x+y\right)^2\ge\dfrac{3}{2}\left(x+y\right)^2+1\left(x+y\right)^2=\dfrac{5}{2}\left(x+y\right)^2\)
\(\Rightarrow\sqrt{2x^2+xy+2y^2}\ge\dfrac{\sqrt{5}}{2}\left(x+y\right)\)
Gợi ý. Dùng cái trên.