(2x+3y)^2
(2x+3y)(2x-3y)-(2x-1)^2+(3y-1)^2 với x=1;y=-1
\(\left(2x+3y\right)\left(2x-3y\right)-\left(2x-1\right)^2+\left(3y-1\right)^2\)
\(=4x^2-9y^2-4x^2+4x-1+9y^2-6y+1=4x-6y\)
Thay x = 1 ; y = -1 ta được :
\(4+6=10\)
2x+1/5=3y-2/7=2x+3y-1/6x và 2x+3y-z=50
2x+\(\dfrac{1}{5}\) = 3y - \(\dfrac{2}{7}\) = 2x+3y -\(\dfrac{1}{6x}\) và 2x + 3y - z =50
có phải đề như này ko
Rút gọn mỗi biểu thức sau:
a, (2x-1)\(^2\)-(x-3).(x+3)-1969
b, (2x-3y).(2x+3y)-(2x-y)\(^2\)
c, (x+3y)\(^2\)+(x-y).(x+y)+280
\(a,\left(2x-1\right)^2-\left(x-3\right)\left(x+3\right)-1969\\ =4x^2-4x+1-x^2+9-1969\\ =3x^2-4x-1959\)
\(b,\left(2x-3y\right)\left(2x+3y\right)-\left(2x-y\right)^2\\ =4x^2-9y^2-4x^2+4xy-y^2\\ =8y^2+4xy=4y\left(2y+x\right)\)
\(c,\left(x+3y\right)^2+\left(x+y\right)\left(x-y\right)+280\\ =x^2+6xy+9y^2+x^2-y^2+280\\ =2x^2+8y^2+6xy+280\)
a: \(\left(2x-1\right)^2-\left(x-3\right)\cdot\left(x+3\right)-1969\)
\(=4x^2-4x+1-x^2+9-1969\)
\(=3x^2-4x-1959\)
b: \(\left(2x-3y\right)\left(2x+3y\right)-\left(2x-y\right)^2\)
\(=4x^2-9y^2-4x^2+4xy-y^2\)
\(=-10y^2+4xy\)
a)\(\text{( 2 x − 1 )^2− ( x − 3 ) ( x + 3 ) − 1969}\)
\(\text{= 4x^2 − 4x + 1 − x^2 + 9 − 1969}\)
\(\text{=3x^2− 4 x − 1959}\)
b) \(\text{( 2 x − 3 y ) ( 2 x + 3 y ) − ( 2 x − y )^2}\)
=\(\text{= 4 x^2− 9 y^2− 4 x^2 + 4 x y − y^2}\)
\(\text{= -10 y^2+ 4 x y = -2 y ( 5 y -2 x )}\)
c)\(\text{( x + 3 y )^2 + ( x + y ) ( x − y ) + 280}\)
\(\text{= x^2 + 6 x y + 9 y^2 + x^2 − y^2 + 280}\)
\(\text{= 2 x^2 + 8 y^2 + 6 x y + 280}\)
(2x+3y)2+2(2x+3y)+1=???
(2x+3y)2+2(2x+3y)+1
= (2x+3y)(2x+3y+2+1)
= (2x+3y)(2x+3y+3)
(2x + 3y)\(^2\) + 2(2x + 3y) + 1
= (2x + 3y + 1)\(^2\)
AD HĐT : (a + b)\(^2\) = a\(^2\) + 2ab + b\(^2\)
(x+3y)^2-(2x-3y)^2-2x^2+12y^2
\(\left(x+3y\right)^2-\left(2x-3y\right)^2-2x^2+12y^2\)
\(=x^2+2\cdot x\cdot3y+\left(3y\right)^2-\left[\left(2x\right)^2-2\cdot2x\cdot3y+\left(3y\right)^2\right]-2x^2+12y^2\)
\(=x^2+6xy+9y^2-4x^2+12xy-9y^2-2x^2+12y^2\)
\(=-5x^2+18xy+12y^2\)
rút gọn: P=(2x+3y)/(xy+2x-3y-6) - (6-xy)/(xy+2x+3y+6) - (x^2 +9)/( x^2 -9)
Điều kiện \(x\ne\pm3;y\ne-2\):
\(P=\frac{2x+3y}{xy+2x-3y-6}-\frac{6-xy}{xy+2x+3y+6}-\frac{x^2+9}{x^2-9}.\)
=> \(P=\frac{2x+3y}{\left(y+2\right)\left(x-3\right)}-\frac{6-xy}{\left(y+2\right)\left(x+3\right)}-\frac{x^2+9}{\left(x-3\right)\left(x+3\right)}\)
\(P=\frac{\left(2x+3y\right)\left(x+3\right)-\left(6-xy\right)\left(x-3\right)-\left(x^2+9\right)\left(y+2\right)}{\left(y+2\right)\left(x-3\right)\left(x+3\right)}\)
\(P=\frac{2x^2+3xy+6x+9y-6x+x^2y+18-3xy-x^2y-9y-2x^2-18}{\left(y+2\right)\left(x-3\right)\left(x+3\right)}\)
\(P=\frac{0}{\left(y+2\right)\left(x-3\right)\left(x+3\right)}=0\)
=> P=0 (với mọi x khác 3, -3 và y khác -2)
Tính
a,(2x-3)2
b,(x-3y)2
c, (2x+3y) (2x-3y)-(2x+y)2
d,(x+3y2)2
a) \(\left(2x-3\right)^2=4x^2-12x+9\)
\(b.\left(x-3y\right)^2=x^2-6xy+9y^2\)
c) \(\left(2x+3y\right)\left(2x-3y\right)-\left(2x+y\right)^2\)
\(=\left(4x^2-9y^2\right)-\left(4x^2+4xy+y^2\right)\)
\(=-10y^2-4xy\)
\(=-2y\left(5y+2x\right)\)
d) \(\left(x+3y^2\right)^2\)
\(=x^2+6xy^2+9y^4\)
Tính:
a,(3+2x)^2
b,(3x-2y)^2
c,(2x-3y).(2x+3y)
d,(2x+3y)^3
a, \(\left(3+2x\right)^2=9+12x+4x^2\)
b, \(\left(3x-2y\right)^2=9x^2-12xy-4y^2\)
c, \(\left(2x-3y\right)\left(2x+3y\right)=4x^2+6xy-6xy-9y^2=4x^2-9y^2\)
d, \(\left(2x+3y\right)^3=8x^3+36x^2y+54xy^2+27y^3\)
( 3 + 2x )2 = 32 + 2.3.2x + ( 2x )2 = 4x2 + 12x + 9
( 3x - 2y )2 = ( 3x )2 - 2.3x.2y + ( 2y )2 = 9x2 - 12xy + 4y2
( 2x - 3y )( 2x + 3y ) = ( 2x )2 - ( 3y )2 = 4x2 - 9y2
( 2x + 3y )3 = ( 2x )3 + 3( 2x )2.3y + 3.2x.( 3y )2 + ( 3y )3 = 8x3 + 36x2y + 54xy2 + 27y3
Khai triển HĐT ?
a) \(\left(3+2x\right)^2=9+12x+4x^2\)
b) \(\left(3x-2y\right)^2=9x^2-12xy+4y^2\)
c) \(\left(2x-3y\right)\left(2x+3y\right)=4x^2-9y^2\)
d) \(\left(2x+3y\right)^3=8x^3+36x^2y+54xy^2+27y^3\)
Tính nhanh
a,(2x-3)2
b,(x-3y)2
c, (2x+3y) (2x-3y)-(2x+y)2
d,(x+3y2)2
a: \(\left(2x-3\right)^2=4x^2-12x+9\)
b: \(\left(x-3y\right)^2=x^2-6xy+9y^2\)
c: \(=4x^2-9y^2-4x^2-4xy-y^2\)
\(=-10y^2-4xy\)
d: \(\left(x+3y^2\right)^2=x^2+6xy^2+9y^4\)
Tính nhanh
a,(2x-3)2
b,(x-3y)2
c, (2x+3y) (2x-3y)-(2x+y)2
d,(x+3y2)2
a: \(\left(2x-3\right)^2=4x^2-12x+9\)
b: \(\left(x-3y\right)^2=x^2-6xy+9y^2\)
c: \(\left(2x+3y\right)\left(2x-3y\right)-\left(2x+y\right)^2\)
\(=4x^2-9y^2-4x^2-4xy-y^2=-8y^2-4xy\)
d: \(\left(x+3y^2\right)^2=x^2+6xy^2+9y^4\)