chứng minh 4a2b2+4ab+1\(\ge\)0 với mọi a,b
Cho a,b>0.Chứng minh
\(a+b\ge\frac{4ab}{1+ab}\)
BĐT cần chứng minh tương đương với
\(\left(a+b\right)\left(1+ab\right)\ge4ab\)
Thật vậy
Áp dụng bđt AM-GM ta có
\(a+b\ge2\sqrt{ab}\)
\(1+ab\ge2\sqrt{ab}\)
Nhân từng vế 2 bđt trên => đpcm
Dấu "=" xảy ra khi a=b=c>0
lộn, a=b>0
\(a+b\ge\frac{4ab}{1+ab}\Leftrightarrow\left(a+b\right)\left(1+ab\right)\ge4ab\Leftrightarrow a+b+a^2b+ab^2\ge4ab\Leftrightarrow\left(a+ab^2-2ab\right)+\left(b+a^2b-2ab\right)\ge0\Leftrightarrow a\left(b^2-2b+1\right)+b\left(a^2-2a+1\right)\ge0\Leftrightarrow a\left(b-1\right)^2+b\left(a-1\right)^2\ge0\)(Đúng do a, b > 0 và \(\left(a-1\right)^2\ge0,\left(b-1\right)^2\ge0\))
Đẳng thức xảy ra khi a = b > 0
C/m: \(\left(a+b\right)^2\) ≥ 4ab với mọi a,b > 0.
\(\Leftrightarrow\left(a-b\right)^2\ge0\left(LĐ\right)\)
Với a; b không âm, chứng minh \(a+b\ge\frac{4ab}{1+ab}\)
\(\text{bđt}\Leftrightarrow\left(a+b\right)\left(1+ab\right)\ge4ab\)
Theo bất đẳng thức Côsi: \(a+b\ge2\sqrt{ab};\text{ }1+ab\ge2\sqrt{ab}\)
\(\Rightarrow\left(a+b\right)\left(1+ab\right)\ge2\sqrt{ab}.2\sqrt{ab}=4ab\text{ (đpcm).}\)
Đẳng thức xảy ra khi \(a=b;\text{ }ab=1\Leftrightarrow a=b=1\)
Chứng minh (1-a)(1-b)(1-c)\(\ge\)8abc. Với mọi a,b,c>0 và a+b+c=1
Áp dụng BĐT AM-GM:
\(\left(1-a\right)\left(1-b\right)\left(1-c\right)=\left(b+c\right)\left(c+a\right)\left(a+b\right)\ge2\sqrt{bc}.2\sqrt{ca}.2\sqrt{ab}=8abc\)
Đẳng thức xảy ra khi \(a=b=c=\dfrac{1}{3}\)
chứng minh với mọi số a,b ta có a2 + 5b2 -4ab + 2a - 6b + 3 > 0
\(a^2+5b^2-4ab+2a-6b+3\)
\(=a^2-4ab+2a+5b^2-6b+3\)
\(=a^2-2a\left(2b-1\right)+5b^2-6b+3\)
\(=a^2-2.a.\frac{2b-1}{2}+\left(\frac{2b-1}{2}\right)^2+5b^2-6b-\left(\frac{2b-1}{2}\right)^2+3\)
\(=\left(a-\frac{2b-1}{2}\right)^2+5a^2-6b-\frac{\left(2b-1\right)^2}{4}+3\)
\(=\left(a-\frac{2b-1}{2}\right)^2+5a^2-6b-\frac{4b^2-4b+1}{4}+3\)
\(=\left(a-\frac{2b-1}{2}\right)^2+5a^2-6b-b^2+b-\frac{1}{4}+3\)
\(=\left(a-\frac{2b-1}{2}\right)^2+4b^2-5b+\frac{11}{4}\)
\(=\left(a-\frac{2b-1}{2}\right)^2+\left(2b\right)^2-2.2b.\frac{5}{4}+\frac{25}{16}+\frac{19}{16}\)
\(=\left(a-\frac{2b-1}{2}\right)^2+\left(2b-\frac{5}{4}\right)^2+\frac{19}{16}\)
Vì \(\left(a-\frac{2b-1}{2}\right)^2\ge0;\left(2b-\frac{5}{4}\right)^2\ge0=>\left(a-\frac{2b-1}{2}\right)^2+\left(2b-\frac{5}{4}\right)^2+\frac{19}{16}\ge\frac{19}{16}>0\) (với mọi a,b) (đpcm)
chứng minh rằng |a+(1/a)| ≥ 2 với mọi a khác 0
Do \(a\) và \(\frac{1}{a}\) luôn cùng dấu
\(\Rightarrow\left|a+\frac{1}{a}\right|=\left|a\right|+\frac{1}{\left|a\right|}\ge2\sqrt{\frac{\left|a\right|}{\left|a\right|}}=2\)
Dấu "=" xảy ra khi \(a=\pm1\)
Chứng minh: \(a^3+b^3\ge ab\left(a+b\right)\) với mọi a,b \(\ge\)0
\(a^3+b^3\ge ab\left(a+b\right)\)
\(\Leftrightarrow a^3+b^3-ab\left(a+b\right)\ge0\)
\(\Leftrightarrow a^3+b^3-a^2b-ab^2\ge0\)
\(\Leftrightarrow a^2\left(a-b\right)+b^2\left(b-a\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2-b^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\)
\("="\Leftrightarrow a=b\)
Chứng minh rằng : a4 + b4 + 2 ≥ 4ab
a4 + b4 + 2 \(\ge\) 4ab
\(\Leftrightarrow\) a4 + b4 + 2 - 4ab \(\ge\) 0
\(\Leftrightarrow\) a4 - 2a2 + 1 + b4 - 2b2 + 1 + 2a2 + 2b2 - 4ab \(\ge\) 0
\(\Leftrightarrow\) (a2 - 1)2 + (b2 - 1)2 + 2(a2 - 2ab + b2) \(\ge\) 0
\(\Leftrightarrow\) (a2 - 1)2 + (b2 - 1)2 + 2(a - b)2 \(\ge\) 0 (Với mọi giá trị a, b)
Vậy a4 + b4 + 2 \(\ge\) 4ab
Chúc bn học tốt!!
Chứng minh rằng \(A+4B\ge\frac{16AB}{1+4AB}\)
Nên bổ sung thêm đk a,b không âm
\(a+4b\ge\frac{16ab}{1+4ab}\)
\(\Leftrightarrow\left(a+4b\right)\left(1+4ab\right)\ge16ab\)
AM-GM:\(a+4b\ge4\sqrt{ab};1+4ab\ge4\sqrt{ab}\)
\(\Rightarrow\left(a+4b\right)\left(1+4ab\right)\ge16ab\left(đpcm\right)\)