Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vo Thi Minh Dao
Xem chi tiết
Nguyễn Thu Linh
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 1 2019 lúc 13:54

Từ pt (1) \(\Rightarrow x=8+\left|y-5\right|\ge8\Rightarrow x+1>0\)

- Nếu \(y\ge5\Rightarrow3\left|y+3\right|\ge24>21\Rightarrow\) vô nghiệm

- Nếu \(-5\le y\le5\) hệ trở thành:

\(\left\{{}\begin{matrix}x-\left(5-y\right)=8\\x+1+3\left(y+5\right)=21\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y=13\\x+3y=5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=17\\y=-4\end{matrix}\right.\)

- Nếu \(y< -5\) hệ trở thành:

\(\left\{{}\begin{matrix}x-\left(5-y\right)=8\\x+1+3\left(-y-5\right)=21\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y=13\\x-3y=35\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{37}{2}\\y=\dfrac{-11}{2}\end{matrix}\right.\)

Nguyễn Thu Linh
20 tháng 1 2019 lúc 13:33

Luân Đào, Hung nguyen, DƯƠNG PHAN KHÁNH DƯƠNG, Thierry Henry, Hạnh Hạnh, Nguyễn Việt Lâm, le thi hong van, Lân Trần Quốc, Unruly Kid, Khôi Bùi , Lê Nguyễn Ngọc Nhi, Ma Đức Minh, Mysterious Person, Akai Haruma, Lightning Farron, Ribi Nkok Ngok, ...

phạm ngọc nam
Xem chi tiết
Đặng Chiến
1 tháng 5 2017 lúc 15:17

mày ó

c cứt à????<3

muốn y người đó thật lòn...
1 tháng 5 2017 lúc 21:53

a. vs m=-1 ,thay vào pt(1) ,ta đc :

x^2 -(-1+2)x +2.(-1) =0

<=>x^2 -x-2 =0

Có : đenta = (-1)^2 -4.(-2) =9 >0

=> căn đenta =căn 9 =3

=> X1 =2 ; X2=-1

Vậy pt (1) có tập nghiệm S={-1;2}

nguyen kim chi
Xem chi tiết
Mr Lazy
18 tháng 7 2015 lúc 21:56

ĐK: \(x\ge-2\)

\(pt\Leftrightarrow\frac{x+5-\left(x+2\right)}{\sqrt{x+5}+\sqrt{x+2}}.\left(1+\sqrt{\left(x+5\right)\left(x+2\right)}\right)=3\)

\(\Leftrightarrow3.\frac{1+\sqrt{x+2}.\sqrt{x+5}}{\sqrt{x+2}+\sqrt{x+5}}=3\)

\(\Leftrightarrow1+\sqrt{x+2}\sqrt{x+5}=\sqrt{x+2}+\sqrt{x+5}\)

\(\Leftrightarrow\left(\sqrt{x+2}-1\right)\left(\sqrt{x+5}-1\right)=0\)

\(\Leftrightarrow\sqrt{x+2}=1\text{ hoặc }\sqrt{x+5}=1\)

\(\Leftrightarrow x=-1\text{ (nhận) hoặc }x=-4\text{ (loại)}\)

Vậy tập nghiệm của pt là: \(S=\left\{1\right\}\)

 

HUỲNH TÔ ÁI VÂN
Xem chi tiết
Nguyễn Việt Lâm
4 tháng 1 2020 lúc 23:12

Nhận thấy \(\left[{}\begin{matrix}x=-2\\x=-3\end{matrix}\right.\) là nghiệm của pt

- Với \(x>-2\Rightarrow\left\{{}\begin{matrix}\left|x+2\right|>0\\\left|x+3\right|>1\end{matrix}\right.\) \(\Rightarrow\left|x+2\right|^{2010}+\left|x+3\right|^{2011}>1\)

\(\Rightarrow\) pt vô nghiệm

- Với \(x< -3\Rightarrow\left\{{}\begin{matrix}\left|x+2\right|>1\\\left|x+3\right|>0\end{matrix}\right.\) \(\Rightarrow\left|x+2\right|^{2010}+\left|x+3\right|^{2011}>1\)

\(\Rightarrow\) pt vô nghiệm

- Với \(-3< x< -2\Rightarrow\left\{{}\begin{matrix}\left|x+3\right|< 1\\\left|x+2\right|< 1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left|x+2\right|^{2010}< \left|x+2\right|\\\left|x+3\right|^{2011}< \left|x+3\right|\end{matrix}\right.\) \(\Rightarrow VT< \left|x+2\right|+\left|x+3\right|=-x-2+x+3=1\)

\(\Rightarrow\) pt vô nghiệm

Vậy pt có đúng 2 nghiệm \(\left[{}\begin{matrix}x=-2\\x=-3\end{matrix}\right.\)

Khách vãng lai đã xóa
Hoang Duc Thinh
Xem chi tiết
ST
10 tháng 2 2019 lúc 18:14

a, \(\Leftrightarrow\left(x+1+x-2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(x-2\right)+\left(x-2\right)^2\right]-\left(2x-1\right)^3=0\)

\(\Leftrightarrow\left(2x-1\right)\left(x^2+2x+1-x^2+x+2+x^2-4x+4\right)-\left(2x-1\right)^3=0\)

\(\Leftrightarrow\left(2x-1\right)\left(x^2-x+7-\left(2x-1\right)^2\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(x^2-x+7-4x^2+4x-1\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(-3x^2+3x+6\right)=0\)

\(\Leftrightarrow-3\left(2x-1\right)\left(x^2-x-2\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(x+1\right)\left(x-2\right)=0\)

=>x=1/2 hoặc x=-1 hoặc x=2

Vậy pt có tập nghiệm là S={1/2;-1;2}

b, \(x^4=24x+32\Leftrightarrow x^4-24x-32=0\)

\(\Leftrightarrow x^4-2x^3-4x^2+2x^3-4x^2-8x+8x^2-16x-32=0\)

\(\Leftrightarrow x^2\left(x^2-2x-4\right)+2x\left(x^2-2x-4\right)+8\left(x^2-2x-4\right)=0\)

\(\Leftrightarrow\left(x^2-2x-4\right)\left(x^2+2x+8\right)=0\)

\(\Leftrightarrow x^2-2x-4=0\) (vì x^2+2x+8 > 0)

\(\Leftrightarrow\left(x-1\right)^2-5=0\Leftrightarrow\left(x-1\right)^2=5\Leftrightarrow x-1=\pm\sqrt{5}\Leftrightarrow x=1\pm\sqrt{5}\)

Vậy...

c, \(\left(x-6\right)^4+\left(x-8\right)^4=16\)

Đặt x-6=t => x-8=t-2

Ta có: \(t^4+\left(t-2\right)^4=16\Leftrightarrow t^4+t^4-8t^3+24t^2-32t+16=16\)

\(\Leftrightarrow2t^4-8t^3+24t^2-32t=0\Leftrightarrow t^4-4t^3+12t^2-16t=0\)

\(\Leftrightarrow t^4-2t^3-2t^3+4t^2+8t^2-16t=0\)

\(\Leftrightarrow t^3\left(t-2\right)-2t^2\left(t-2\right)+8t\left(t-2\right)=0\)

\(\Leftrightarrow\left(t-2\right)\left(t^3-2t^2+8t\right)=0\Leftrightarrow\left(t-2\right)t\left(t^2-2t+8\right)=0\)

Mà t^2-2t+8=(t-1)^2+7 > 0

\(\Rightarrow\orbr{\begin{cases}t-2=0\\t=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x-6-2=0\\x-6=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=8\\x=6\end{cases}}}\)

Vậy...

Lê Xuân Lâm
Xem chi tiết
Capheny Bản Quyền
15 tháng 9 2020 lúc 11:31

\(\left(x^2-4x+3\right)\left(x^2-6x+8\right)=8\) 

\(\left(x^2-3x-x+3\right)\left(x^2-4x-2x+8\right)=8\)  

\(\left[x\left(x-3\right)-1\left(x-3\right)\right]\left[x\left(x-4\right)-2\left(x-4\right)\right]=8\)

\(\left(x-1\right)\left(x-3\right)\left(x-2\right)\left(x-4\right)=8\) 

\(\left(x-1\right)\left(x-4\right)\left(x-2\right)\left(x-3\right)=8\) 

\(\left(x^2-5x+4\right)\left(x^2-5x+6\right)-8=0\)  

Đặt \(t=x^2-5x+4\) 

\(t\left(t+2\right)-8=0\) 

\(t^2+2t-8=0\) 

\(t^2+4t-2t-8=0\) 

\(t\left(t+4\right)-2\left(t+4\right)=0\) 

\(\left(t+4\right)\left(t-2\right)=0\) 

\(\orbr{\begin{cases}t+4=0\\t-2=0\end{cases}}\) 

\(\orbr{\begin{cases}t=-4\\t=2\end{cases}}\)  

\(\orbr{\begin{cases}x^2-5x+4=-4\\x^2-5x+4=2\end{cases}}\)  

\(\orbr{\begin{cases}x^2-5x+8=0\left(ptvn\right)\\x^2-5x+2=0\end{cases}}\) 

\(x^2-5x+2=0\) 

\(\orbr{\begin{cases}x=\frac{5+\sqrt{17}}{2}\\x=\frac{5-\sqrt{17}}{2}\end{cases}}\)

Khách vãng lai đã xóa
phạm ngọc nam
Xem chi tiết
Nguyen Thi Trinh
2 tháng 5 2017 lúc 16:14

a/ Thay m=-1 vào phương trình (1) ta được:

\(x^2-x-2=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

Vậy khi m=-1 thì phương trình (1) có \(S=\left\{2;-1\right\}\)

b/ Xét phương trình (1) có

\(\Delta=\left(m+2\right)^2-4.2m\)

= \(m^2-4m+4=\left(m-2\right)^2\)

Ta có: \(\left(m-2\right)^2\ge0\) với mọi m

\(\Leftrightarrow\Delta\ge0\) với mọi m

\(\Rightarrow\) Phương trình (1) có 2 nghiệm với mọi m

Áp dụng hệ thức Vi-ét ta có:

\(\left\{{}\begin{matrix}x_1+x_2=m+2\\x_1.x_2=2m\end{matrix}\right.\)

Theo đề bài ta có:

\(\left(x_1+x_2\right)^2-x_1x_2\le5\)

\(\Leftrightarrow\left(m+2\right)^2-2m\le5\)

\(\Leftrightarrow m^2+2m-1\le0\)

\(\Leftrightarrow\left(m+1-\sqrt{2}\right)\left(m+1+\sqrt{2}\right)\le0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}m+1-\sqrt{2}\ge0\\m+1+\sqrt{2}\le0\end{matrix}\right.\\\left\{{}\begin{matrix}m+1-\sqrt{2}\le0\\m+1+\sqrt{2}\ge0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}m\ge-1+\sqrt{2}\\m\le-1-\sqrt{2}\end{matrix}\right.\\\left\{{}\begin{matrix}m\le-1+\sqrt{2}\\m\ge-1-\sqrt{2}\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-1+\sqrt{2}\le m\le-1-\sqrt{2}\left(ktm\right)\\-1-\sqrt{2}\le m\le-1+\sqrt{2}\left(tm\right)\end{matrix}\right.\)

vậy để phương trình (1) có 2 nghiệm \(x_1,x_2\) thỏa mãn \(\left(x_1+x_2\right)^2-x_1x_2\le5\) thì \(-1-\sqrt{2}\le m\le-1+\sqrt{2}\)

Tami Hiroko
Xem chi tiết
Kiệt Nguyễn
28 tháng 1 2020 lúc 18:43

\(ĐKXĐ:x\ne-1;x\ne2\)

\(\frac{1}{x+1}-\frac{5}{x-2}=\frac{15}{\left(x+1\right)\left(x-2\right)}\)

\(\Rightarrow\frac{x-2}{\left(x+1\right)\left(x-2\right)}-\frac{5\left(x+1\right)}{\left(x+1\right)\left(x-2\right)}=\frac{15}{\left(x+1\right)\left(x-2\right)}\)

\(\Rightarrow\frac{x-2}{\left(x+1\right)\left(x-2\right)}-\frac{5x+5}{\left(x+1\right)\left(x-2\right)}=\frac{15}{\left(x+1\right)\left(x-2\right)}\)

\(\Rightarrow\frac{x-2-5x-5}{\left(x+1\right)\left(x-2\right)}=\frac{15}{\left(x+1\right)\left(x-2\right)}\)

\(\Rightarrow x-2-5x-5=15\)

\(\Leftrightarrow-4x=22\Leftrightarrow x=\frac{-11}{2}\)

Vậy \(S=\left\{\frac{-11}{2}\right\}\)

Khách vãng lai đã xóa
Hoàng Ninh
28 tháng 1 2020 lúc 19:16

\(\frac{1}{x+1}-\frac{5}{x-2}=\frac{15}{\left(x+1\right)\left(x-2\right)}\left(ĐKXĐ:x\ne-1;x\ne2\right)\)

\(\Leftrightarrow\frac{1\left(x-2\right)-5\left(x+1\right)}{\left(x+1\right)\left(x-2\right)}=\frac{15}{\left(x+1\right)\left(x-2\right)}\)

\(\Leftrightarrow\frac{x-2-5x-5}{\left(x+1\right)\left(x-2\right)}=\frac{15}{\left(x+1\right)\left(x-2\right)}\)

\(\Leftrightarrow\frac{-4x-7}{\left(x+1\right)\left(x-2\right)}=\frac{15}{\left(x+1\right)\left(x-2\right)}\)

\(\Rightarrow-4x-7=15\)

\(\Leftrightarrow-4x=22\)

\(\Leftrightarrow x=22:\left(-4\right)\)

\(\Leftrightarrow x=\frac{-22}{4}=\frac{-11}{2}\)

Vậy tập nghiệm \(S=\left\{\frac{-11}{2}\right\}\)

Khách vãng lai đã xóa