1) Giai he phuong trinh:
a) \(\left\{{}\begin{matrix}x+y+xy=5\\x^2+y^2+x+y=8\end{matrix}\right.\)
giai hpt
a.\(\left\{{}\begin{matrix}x-2\left(y-1\right)=3x\\3x-2\left(y+1\right)=3\left(x-1\right)\end{matrix}\right.\)
b.\(\left\{{}\begin{matrix}3\left(x+1\right)-2y=5-y\\4x-2\left(y+1\right)=-3\end{matrix}\right.\)
Giai he phuong trinh : \(\left\{{}\begin{matrix}x^2+y^2+xy=3\\x^2+xy=7x+5y-9\end{matrix}\right.\)
1. Cho pt: x2 -2(m+1)x+m2=0 (1). Tìm m để pt có 2 nghiệm x1 ; x2 thỏa mãn (x1-m)2 + x2=m+2.
2. Giai pt: \(\left(x-1\right)\sqrt{2\left(x^2+4\right)}=x^2-x-2\)
3. Giai hệ pt: \(\left\{{}\begin{matrix}\frac{1}{\sqrt[]{x}}-\frac{\sqrt{x}}{y}=x^2+xy-2y^2\left(1\right)\\\left(\sqrt{x+3}-\sqrt{y}\right)\left(1+\sqrt{x^2+3x}\right)=3\left(2\right)\end{matrix}\right.\)
4. Giai pt trên tập số nguyên \(x^{2015}=\sqrt{y\left(y+1\right)\left(y+2\right)\left(y+3\right)}+1\)
giai he phuong trinh \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=5\\\dfrac{1}{xy}=6\end{matrix}\right.\)
Giai phuong trinh;
\(\left(x^2+2x-2\right)^2+2\left(x^2+2x-2\right)=x+2\)
Giải hpt : a) \(\left\{{}\begin{matrix}\left(x^2+y^2\right)\left(x+y+1\right)=25\left(y+1\right)\\x^2+xy+2y^2+x-8y=9\end{matrix}\right.\) b) \(\left\{{}\begin{matrix}x^2+y^2+6xy-\frac{1}{\left(x-y\right)^2}+\frac{9}{8}=0\\2y-\frac{1}{x-y}+\frac{5}{4}=0\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}\frac{x}{x^2-y}+\frac{5y}{x+y^2}=4\\5x+y+\frac{x^2-5y^2}{xy}=5\end{matrix}\right.\) d) \(\left\{{}\begin{matrix}3xy+y+1=21x\\9x^2y^2+3xy+1=117x^2\end{matrix}\right.\)
e) \(\left\{{}\begin{matrix}x\left(x^2-y^2\right)+x^2=1\sqrt{\left(x-y^2\right)^3}\\76x^2-20y^2+2=\sqrt[3]{4x\left(8x+1\right)}\end{matrix}\right.\)
giải các hệ phương trình sau
1\(\left\{{}\begin{matrix}\left(x-1\right)-\left(x+2\right)^2=9y\\\left(y-3\right)^2-\left(y+2\right)^2=5x\end{matrix}\right.\)
2 \(\left\{{}\begin{matrix}\left(7+x\right)^2-\left(5+x\right)^2=6y\\\left(2-y\right)^2-\left(6-y\right)^2=4x\end{matrix}\right.\)
3) \(\left\{{}\begin{matrix}\left(x+1\right)^2+\left(y-2\right)^2=x^2+y^2\\\left(x-3\right)^2+\left(y+1\right)^2=x^2-x+y^3-3\end{matrix}\right.\)
Giải hệ phương trình:
a)
\(\left\{{}\begin{matrix}\left|x-1\right|+\left|y-2\right|=1\\\left|x-1\right|+3y=3\end{matrix}\right.\)
b)
\(\left\{{}\begin{matrix}\left|x-2\right|+2\left|y-1\right|=9\\x+\left|y-1\right|=-1\end{matrix}\right.\)