Tìm n để đa thức x4 - x + 6x2 + n chia hết cho đa thức x - x2 + 5
Tìm n để đa thức x4 -x3+6x2-x+n chia hết cho đa thức x2-x+5
Để \(x^4-x^3+6x^2-x+n⋮x^2-x+5\) thì
\(n-5=0\Rightarrow n=5\)
Vậy để \(x^4-x^3+6x^2-x+n⋮x^2-x+5\) thì \(n=5\)
Tìm a để đa thức x 4 - x 3 + 6 x 2 - x + a chia hết cho đa thức x 2 - x + 5
Để có phép chia hết thì số dư phải bằng 0.
Ta có: a – 5 = 0 hay a = 5.
a/ Tìm a sao cho đa thức : x4 – x3 + 6x2 – x + a chia hết cho đa thức: x2 – x + 5
b/ Tính giá trị nguyên của n để giá trị của biểu thức : 3n3 + 10n2 – 5 chia hết cho giá trị của biểu thức: 3n + 1
b: \(\Leftrightarrow3n^3+n^2+9n^2+3n-3n-1-4⋮3n+1\)
\(\Leftrightarrow3n+1\in\left\{1;-1;2;-2;4;-4\right\}\)
\(\Leftrightarrow n\in\left\{0;-1;1\right\}\)
Bài 5: Tìm a, b sao cho
a/ Đa thức x4 – x3 + 6x2 – x + a chia hết cho đa thức x2 – x + 5
b/ Đa thức 2x3 – 3x2 + x + a chia hết cho đa thức x + 2.
Đặt \(f\left(x\right)=2x^3-3x^2+x+a\)
Ta có: phép chia \(f\left(x\right)\) cho \(x+2\) có dư là \(R=f\left(-2\right)\)
\(\Rightarrow f\left(-2\right)=2.\left(-2\right)^3-3.\left(-2\right)^2+\left(-2\right)+a\)
\(f\left(-2\right)=2.\left(-8\right)-3.4-2+a\)
\(f\left(-2\right)=-16-12-2+a\)
\(f\left(-2\right)=-20+a\)
Để \(f\left(x\right)\) chia hết cho \(x+2\) thì \(R=0\) hay \(f\left(-2\right)=0\)
\(\Rightarrow-20+a=0\Leftrightarrow a=20\)
Tìm a và b để đa thức A chia hết cho đa thức B với:
a) A = x 4 - x 3 + 6 x 2 - x + a và B = x 2 - x + 5;
b) A = x 4 - 9 x 3 + 21 x 2 +ax + b và B = x 2 - x - 2.
Hay a − 1 = 0 b + 30 = 0 ⇒ a = 1 b = − 30 .
tìm giá trị nguyên của a để đa thức x4 - x3 + 6x2 - x + a chia hết cho đa thức x2 - x + 5
giúp mik với ):
\(x^4-x^3+6x^2-x+a=x^2\left(x^2-x+5\right)+x^2-x+a\)
Do \(x^2\left(x^2-x+5\right)\) chia hết \(x^2-x+5\)
\(\Rightarrow x^2-x+a\) chia hết \(x^2-x+5\)
\(\Rightarrow a=5\)
b) Tìm m để đa thức A ( x ) = x 4 – x 3 + 6 x 2 – x + m chia cho đa thức B ( x ) = x 2 – x + 5 có dư bằng 2
A(x) chia cho B(x) có số dư bằng 2. Vậy m – 5 = 2 ⇒ m = 7.
Đa thức x4−x3+6x2−x+a chia hết cho đa thức x2−x+5 Khi : a. a= -7 b. a = 7 c. a = - 5 d. a = 5
Cho đa thức A(x) = 1 + x2 + x4 + .... + x2n - 2; B= 1 + x + x2 + ... + xn-1. Tìm số nguyên dương n để đa thức A(x) chia hết cho đa thức B(x).
A(x)=(1-x^n)(1+x^n)/(1-x)(1+x)
B(x)=1-x^n/1-x
A(x) chia hết cho B(x) khi 1-x^n chia hết cho 1+x
x^n+1/x+1=A(x)+(1+(-1)^n)/(x+1)
=>1-x^n chia hết cho 1+x khi và chỉ khi n=2k+1
Chia đa thức cho đa thức: (mình cần gấppppppp
(x4-x3+6x2-x+3) : (x2-x+5)
Ta có: \(\dfrac{x^4-x^3+6x^2-x+3}{x^2-x+5}\)
\(=\dfrac{x^4-x^3+5x^2+x^2-x+5-2}{x^2-x+5}\)
\(=x^2+1-\dfrac{2}{x^2-x+5}\)