Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
14 tháng 5 2017 lúc 9:38

+ Parabol y = ax2 + bx + 2 có trục đối xứng x = –3/2

⇒ –b/2a = –3/2 ⇒ b = 3a (1)

+ Parabol y = ax2 + bx + 2 đi qua điểm A(3; –4)

⇒ –4 = a.32 + b.3 + 2 ⇒ 9a + 3b = –6 (2).

Thay b = 3a ở (1) vào biểu thức (2) ta được:

9a + 3.3a = –6 ⇒ 18a = –6 ⇒ a = –1/3 ⇒ b = –1.

Vậy parabol cần tìm là y = –1/3x2 – x + 2.

Trần Như Đức Thiên
Xem chi tiết
Akai Haruma
5 tháng 1 2022 lúc 21:10

Lời giải:
Parabol đi qua $A(2;19)$ nên $y_A=3x_A^2+bx_A+c$ hay $19=12+2b+c$

$\Rightarrow 2b+c=7(1)$

$x=\frac{-2}{3}$ là trục đối xứng 

$\Leftrightarrow \frac{-b}{2.3}=\frac{-2}{3}$

$\Rightarrow b=4(2)$

Từ $(1); (2)\Rightarrow c=-1$

Vậy parabol có pt $y=3x^2+4x-1$

Nguyễn Lê Phước Thịnh
5 tháng 1 2022 lúc 21:07

Theo đề, ta có:

\(\left\{{}\begin{matrix}\dfrac{-b}{6}=\dfrac{-2}{3}\\12+2b+c=19\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=4\\c=-1\end{matrix}\right.\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
11 tháng 5 2018 lúc 6:13

+ Parabol y = ax2 + bx + 2 đi qua điểm B(–1 ; 6)

⇒ 6 = a.( –1)2 + b.( –1) + 2 ⇒ a = b + 4 (1)

+ Parabol y = ax2 + bx + 2 có tung độ của đỉnh là –1/4

Giải bài 3 trang 49 sgk Đại số 10 | Để học tốt Toán 10

Thay (1) vào (2) ta được: b2 = 9.(b + 4) ⇔ b2 – 9b – 36 = 0.

Phương trình có hai nghiệm b = 12 hoặc b = –3.

Với b = 12 thì a = 16.

Với b = –3 thì a = 1.

Vậy có hai parabol thỏa mãn là y = 16x2 + 12b + 2 và y = x2 – 3x + 2.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 6 2017 lúc 7:13

+ Parabol y = ax2 + bx + 2 đi qua M(1 ; 5)

⇒ 5 = a.12 + b.1 + 2 ⇒ a + b = 3 (1) .

+ Parabol y = ax2 + bx + 2 đi qua N(–2; 8)

⇒ 8 = a.( –2)2 + b.( –2) + 2 ⇒ 4a – 2b = 6 (2).

Từ (1) và (2) suy ra: a = 2; b = 1.

Vậy parabol cần tìm là y = 2x2 + x + 2.

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
30 tháng 9 2023 lúc 23:24

Đồ thị hàm số  \(y = a{x^2} + bx + c\) đi qua điểm A(8; 0) nên:

\(a{.8^2} + b.8 + c = 0 \Leftrightarrow 64a + 8b + c = 0\)

Đồ thị hàm số  \(y = a{x^2} + bx + c\) có đỉnh là I(6;-12):

\(\frac{{ - b}}{{2a}} = 6 \Leftrightarrow  - b = 12a \Leftrightarrow 12a + b = 0\)

\(a{.6^2} + 6b + c =  - 12 \Leftrightarrow 36a + 6b + c =  - 12\)

Từ 3 phương trình trên ta có: \(a = 3;b =  - 36,c = 96\)

=> Hàm số cần tìm là \(y = 3{x^2} - 36x + 96\)

Vương Thiên Tử
Xem chi tiết
Võ Hồng Phúc
12 tháng 10 2020 lúc 15:46

Đỉnh của parabol là \(\frac{-\Delta}{4a}\) ta có

\(\left\{{}\begin{matrix}\frac{-\Delta}{4a}=-25\\16a-4b+c=0\\36a+6b+c=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac=100a\\16a-4b+c=0\\36a+6b+c=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac=100a\\16a-4b+c=0\\36a+6b+c=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac=100a\\24a+c=0\\2a+b=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4a^2-4ac=100a\\24a+c=0\\b=-2a\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-c=25\\24a+c=0\\b=-2a\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=-2\\c=-24\end{matrix}\right.\)

\(\Rightarrow y=x^2-2x-24\)

Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 4 2018 lúc 16:22

Vì parabol đi qua ba điểm A, B, C nên ta có hệ phương trình:

Vậy (P): y = -x2 + 2x

Chọn C.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 7 2017 lúc 14:55

Đáp án A

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 3 2017 lúc 18:00

Đáp án A