Cho (O,R) và điểm M cố định. Một đường thẳng tam giác quay quanh M cắt (O,R) tại hai điểm Avà B. Chứng minh rằng :\(\overrightarrow{MA}\). \(\overrightarrow{MB}\) = MO2- R2
1. Cho tam giác ABC . Các điểm M,N thỏa mãn : \(\overrightarrow{MN}=2\overrightarrow{MA}-\overrightarrow{MB}+\overrightarrow{MC}\)
a. Tìm điểm I sao cho \(2\overrightarrow{IA}-\overrightarrow{IB}+\overrightarrow{IC}=\overrightarrow{O}\)
b. Chứng minh rằng đường thẳng MN luôn đi qua một điểm cố định
c.gọi P là trung điểm của BN. Chứng minh đường thẳng MP luôn đi qua một điểm cố định
Cho đường tròn tâm o bán kính r, điểm M cố định và OM>r. Đường thẳng d quay quanh M cắt đtr O tại A, B
a)C/m: MA.MB=MO^2 - R^2
b) xác định vị trí của đường thẳng d để MA+MB đạt Min
Cho đường tròn (O; R) và một điểm A cố định trên đường tròn đó. Qua A vẽ tiếp tuyến xy. Từ một điểm M trên xy vẽ tiếp tuyến MB với đường tròn (O). Hai đường cao AD và BE của tam giác MAB cắt nhau tại H.
a) Chứng minh rằng ba điểm M, H, O thẳng hàng.
b) Chứng minh rằng tứ giác AOBH là hình thoi.
c) Khi điểm M di động trên xy thì điểm H di động trên đường nào?
a: Xét (O) có
MA là tiếp tuyến có A là tiếp điểm
MB là tiếp tuyến có B là tiếp điểm
Do đó: MA=MB
Xét ΔMAB có MA=MB
nên ΔMAB cân tại M
Suy ra: \(\widehat{MAB}=\widehat{MBA}\)
Xét ΔDAB vuông tại D và ΔEBA vuông tại E có
BA chung
\(\widehat{DBA}=\widehat{EAB}\)
Do đó: ΔDAB=ΔEBA
Suy ra: \(\widehat{DAB}=\widehat{EBA}\)
hay \(\widehat{HAB}=\widehat{HBA}\)
Xét ΔHBA có \(\widehat{HAB}=\widehat{HBA}\)
nên ΔHBA cân tại H
Suy ra: HA=HB
hay H nằm trên đường trung trực của AB(1)
Ta có:MA=MB
nên M nằm trên đường trung trực của AB(2)
Ta có: OA=OB
nên O nằm trên đường trung trực của AB(3)
Từ (1), (2) và (3) suy ra O,H,M thẳng hàng
Cho đường tròn (O; R) và điểm A cố định ngoài đường tròn. Qua A kẻ hai tiếp tuyến AM, AN tói đường tròn (M, N là hai tiếp điểm). Một đường thẳng d đi qua A cắt đường tròn (O; R) tại B và C (AB < AC). Gọi I là trung điểm BC
a, Chứng minh năm điểm A, M, N, O, I thuộc một đường tròn
b, Chứng minh A M 2 = A B . A C
c, Đường thẳng qua B, song song với AM cắt MN tại E. Chúng minh IE song song MC
d, Chứng minh khi d thay đổi quanh quanh điểm A thì trọng tâm G của tam giác MBC luôn nằm trên một đường tròn cố định
a, Chú ý: A M O ^ = A I O ^ = A N O ^ = 90 0
b, A M B ^ = M C B ^ = 1 2 s đ M B ⏜
=> DAMB ~ DACM (g.g)
=> Đpcm
c, AMIN nội tiếp => A M N ^ = A I N ^
BE//AM => A M N ^ = B E N ^
=> B E N ^ = A I N ^ => Tứ giác BEIN nội tiếp => B I E ^ = B N M ^
Chứng minh được: B I E ^ = B C M ^ => IE//CM
d, G là trọng tâm DMBC Þ G Î MI
Gọi K là trung điểm AO Þ MK = IK = 1 2 AO
Từ G kẻ GG'//IK (G' Î MK)
=> G G ' I K = M G M I = M G ' M K = 2 3 I K = 1 3 A O không đổi (1)
MG' = 2 3 MK => G' cố định (2). Từ (1) và (2) có G thuộc (G'; 1 3 AO)
cho đường tròn (O;R) và đường thẳng d cố định không giao nhau. Từ điểm M thuộc (d) kẻ 2 tiếp tuyến MA và MB với đường tròn (O;R) (A,B là các tiếp điểm.
1. chứng minh rằng tâm đường tròn nội tiếp tam giác AMB thuộc đường tròn (O;R)
2, cho biết MA=R căn 3,tính diện tích hình phẳng giới hạn bởi hai tiếp tuyến MA,mB và cung nhỏ AB
3, chứng minh rằng M di động trên (d) thì AB luôn đi qua một điểm cố định
Diện tích toàn phần của khối nhựa hình lập phương là:
10 x 10 x 6 = 600 (cm2)
Cạnh khối gỗ hình lập phương là:
10 : 2 = 5 (cm)
Diện tích toàn phần của khối gỗ hình lập phương là:
5 x 5 x 6 = 150 (cm2)
Diện tích toàn phần của khối nhựa gấp diện tích toàn phần của khối gấp số lần là:
600 : 150 = 4 (lần)
Cho đường tròn (O;R) và điểm A cố định với OA=2R, BC là đường kính quay quanh O sao cho đường thẳng BC không đi qua A. Đường tròn ngoại tiếp tam giác ABC cắt AO tại I khác A. Các đường thẳng AB,AC cắt (O) lần lượt tại D và E. K là giao điểm của DE và AO
a/ chứng minh bốn điểm K,E,C,I cùng thuộc một đường tròn
b/ tính độ dài đoạn AI theo R
c/ chứng minh rằng đường tròn ngoại tiếp tam giác ADE luôn đi qua 1 điểm cố định khác A khi đường kính BC quay quanh (O)
Cho tam giác ABC
a) Hãy xác định điểm M để \(\overrightarrow {MA} + \overrightarrow {MB} + 2\overrightarrow {MC} = \overrightarrow 0 \)
b) Chứng minh rằng với mọi điểm O, ta có \(\overrightarrow {OA} + \overrightarrow {OB} + 2\overrightarrow {OC} = 4\overrightarrow {OM} \)
Tham khảo:
a) Ta có: \(\overrightarrow {MA} + \overrightarrow {MB} + 2\overrightarrow {MC} = \overrightarrow 0 \Leftrightarrow \overrightarrow {MA} + \left( {\overrightarrow {MA} + \overrightarrow {AB} } \right) + 2\left( {\overrightarrow {MA} + \overrightarrow {AC} } \right) = \overrightarrow 0 \)
\(\begin{array}{l} \Leftrightarrow 4\overrightarrow {MA} + \overrightarrow {AB} + 2\overrightarrow {AC} = \overrightarrow 0 \\ \Leftrightarrow 4\overrightarrow {AM} = \overrightarrow {AB} + 2\overrightarrow {AC} \\ \Leftrightarrow \overrightarrow {AM} = \frac{1}{4}\overrightarrow {AB} + \frac{1}{2}\overrightarrow {AC} \end{array}\)
Trên cạnh AB, AC lấy điểm D, E sao cho \(AD = \frac{1}{4}AB;\;\,AE = \frac{1}{2}AC\)
Khi đó \(\overrightarrow {AM} = \overrightarrow {AD} + \overrightarrow {AE} \) hay M là đỉnh thứ tư của hình bình hành AEMD.
b) Chứng minh rằng với mọi điểm O, ta có \(\overrightarrow {OA} + \overrightarrow {OB} + 2\overrightarrow {OC} = 4\overrightarrow {OM} \)
Với mọi điểm O, ta có: \(\left\{ \begin{array}{l}\overrightarrow {OA} = \overrightarrow {OM} + \overrightarrow {MA} ;\;\\\overrightarrow {OB} = \overrightarrow {OM} + \overrightarrow {MB} ;\;\,\\\overrightarrow {OC} = \overrightarrow {OM} + \overrightarrow {MC} \end{array} \right.\)
\(\begin{array}{l} \Rightarrow \overrightarrow {OA} + \overrightarrow {OB} + 2\overrightarrow {OC} = \left( {\overrightarrow {OM} + \overrightarrow {MA} } \right) + \left( {\overrightarrow {OM} + \overrightarrow {MB} } \right) + 2\left( {\overrightarrow {OM} + \overrightarrow {MC} } \right)\\ = 4\overrightarrow {OM} + \left( {\overrightarrow {MA} + \overrightarrow {MB} + 2\overrightarrow {MC} } \right) = 4\overrightarrow {OM} + \overrightarrow 0 = 4\overrightarrow {OM} .\end{array}\)
Vậy với mọi điểm O, ta có \(\overrightarrow {OA} + \overrightarrow {OB} + 2\overrightarrow {OC} = 4\overrightarrow {OM} \).
Tham khảo cách 2 câu a:
Cách 2:
Ta có: \(\overrightarrow {MA} + \overrightarrow {MB} + 2\overrightarrow {MC} = \overrightarrow 0 \Leftrightarrow \left( {\overrightarrow {MC} + \overrightarrow {CA} } \right) + \left( {\overrightarrow {MC} + \overrightarrow {CB} } \right) + 2\overrightarrow {MC} = \overrightarrow 0 \)
\(\begin{array}{l} \Leftrightarrow 4\overrightarrow {MC} + \overrightarrow {CA} + \overrightarrow {CB} = \overrightarrow 0 \\ \Leftrightarrow 4.\overrightarrow {CM} = \overrightarrow {CA} + \overrightarrow {CB} \end{array}\)
Gọi D là đỉnh thứ tư của hình bình hành ACBD.
Khi đó: \(\overrightarrow {CD} = \overrightarrow {CA} + \overrightarrow {CB} \)\( \Rightarrow 4.\overrightarrow {CM} = \overrightarrow {CD} \)
\( \Leftrightarrow \overrightarrow {CM} = \frac{1}{4}\overrightarrow {CD} \Leftrightarrow \overrightarrow {CM} = \frac{1}{2}\overrightarrow {CO} \)
Với O là tâm hình bình hành ACBD, cũng là trung điểm đoạn AB.
Vậy M là trung điểm của trung tuyến kẻ từ C của tam giác ABC.
Bài 5. Cho đường tròn (O;R) và điểm A cố định ngoài đường tròn. Qua A kẻ hai tiếp
tuyến AM, AN tới đường tròn (M, N là hai tiếp điểm). Một đường thẳng d đi qua A
cắt đường tròn (O;R) tại B và C (AB < AC). Gọi I là trung điểm của BC
a) Chứng minh năm điểm A,M, N, O,I cùng thuộc một đường tròn
b) Chứng minh AM2 = AB.AC
c) Đường thẳng qua B, song song với AM cắt MN tại E. Chứng minh: IE // MC
d) Chứng minh: Khi d thay đổi quay quanh điểm A thì trọng tâm G của tam giác
MBC luôn nằm trên một đường tròn cố định.
Đáp án:
Giải thích các bước giải:
Gọi G là trọng tâm của tgMBC => G trên MI và MG/IM = 2/3
Trên MN lấy điểm K sao cho MK/MN = 2/3 => Điểm K cố định và KG // NI vì MG/MI = MK/MN =2/3
=> ^MGK = ^MIN mà ^MIN không đổi (góc nội tiếp của đường tròn đk AO qua 5 điểm câu a)
=> G thuộc cung tròn cố định chứa ^MGK không đổi nhận MK là dây
Học tốt
Bài 5. Cho đường tròn (O;R) và điểm A cố định ngoài đường tròn. Qua A kẻ hai tiếp
tuyến AM, AN tới đường tròn (M, N là hai tiếp điểm). Một đường thẳng d đi qua A
cắt đường tròn (O;R) tại B và C (AB < AC). Gọi I là trung điểm của BC
a) Chứng minh năm điểm A,M, N, O,I cùng thuộc một đường tròn
b) Chứng minh AM^2 = AB.AC
c) Đường thẳng qua B, song song với AM cắt MN tại E. Chứng minh: IE // MC
d) Chứng minh: Khi d thay đổi quay quanh điểm A thì trọng tâm G của tam giác
MBC luôn nằm trên một đường tròn cố định.