Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đỗ Thị Thùy
Xem chi tiết
Đạt Nguyễn
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
18 tháng 8 2018 lúc 10:48

a) Sử dụng tính chất đường trung bình tam giác và đường chéo hình thang cân ta có MENG là hình thoi.

b)  S M E N G = 1 2 S A B C D = 400 m 2

sakura haruko
Xem chi tiết
Hoàng Huy
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 7 2021 lúc 20:20

a) Xét tứ giác ABED có

AB//ED(gt)

AB=ED

Do đó: ABED là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Rin Nhà Chống Đạn
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 2 2022 lúc 21:18

Bài 1: 

Xét ΔABD có 

M là trung điểm của AB

Q là trung điểm của AD

Do đó: MQ là đường trung bình

=>MQ//BD và MQ=BD/2(1)

Xét ΔBCD có 

N là trung điểm của BC

P là trung điểm của CD

Do đó: NP là đường trung bình

=>NP//BD và NP=BD/2(2)

Từ (1) và (2) suy ra MQ=NP và MQ//NP

Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của BC

Do đó: MN là đường trung bình

=>MN=AC/2=BD/2(3)

Từ (1) và (3) suy ra MQ=MN

Xét tứ giác MQPN có

MQ//PN

MQ=PN

Do đó: MQPN là hình bình hành

mà MQ=MN

nên MQPN là hình thoi

Suy ra: MP⊥NQ

nguyễn thị kim ngân
Xem chi tiết
Triệu Minh Khôi
3 tháng 8 2017 lúc 17:32

1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu của A trên phân giác góc B và góc C. Cm: IK//BC

2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2

3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc AQM

=

1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu củ

1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu của A trên phân giác góc B và góc C. Cm: IK//BC

2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2

3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc AQMa A trên phân giác góc B và góc C. Cm: IK//BC

2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2

3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc A

1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu của A trên phân giác góc B và góc C. Cm: IK//BC

2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2

3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc AQM

QM

1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu của A trên phân giác góc B và góc C. Cm: IK//BC

2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2

3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc AQM

tóm lị là ABGHMN là sai 

nguyễn thị kim ngân
3 tháng 8 2017 lúc 17:41

Vậy tóm lại là sao, mk hk hỉu

Trần Hạ Vi
10 tháng 8 2018 lúc 14:38

m bị não chó ak Triệu Minh Khôi

hoàng đức trọng
Xem chi tiết
Thanh Hoàng Thanh
6 tháng 2 2021 lúc 16:15

Xét tam giác ABD có:

E là trung điểm của AB (gt)

M là trung điệm của AD (gt)

=> EM là đường trung bình của tam giác ABD 

=> EM = \(\dfrac{1}{2}\)BD (TC đường trung bình của tam giác)

Mà AC = BD (ABCD là hình thang cân)

=> EM =  \(\dfrac{1}{2}\)AC 

Xét tam giác ADC có:

M là trung điểm của AD (gt)

G là trung điệm của CD (gt)

=> MG là đường trung bình của tam giác ADC 

=> MG // AC và MG = \(\dfrac{1}{2}\)AC (TC đường trung bình của tam giác)  (1)

Xét tam giác ABC có:

E là trung điểm của AB (gt)

N là trung điệm của BC (gt)

=> EN là đường trung bình của tam giác ABC

=> EN // AC và EN = \(\dfrac{1}{2}\)AC (TC đường trung bình của tam giác) (2)

Từ (1) và (2) =>  MG // EN // AC và MG = EN = \(\dfrac{1}{2}\)AC

Mà EM =  \(\dfrac{1}{2}\)AC (cmt) => EM = MG = EN = \(\dfrac{1}{2}\)AC

Xét tứ giác MENG: 

MG // EN (cmt)

MG = EN (cmt)

=> MENG là hình bình hành (dhnb)

mà EM = MG (cmt)

=> MENG là hình thoi (dhnb) 

 

 

Nguyễn Mỹ Hà Linh
Xem chi tiết