Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đoàn Thu Thuỷ
Xem chi tiết
Khổng Anh Tuấn
Xem chi tiết
LT丶Hằng㊰
29 tháng 11 2020 lúc 20:44

A B C D K I O E

* Giả thiết kết luận bạn tự trình bày nhé

a) Ta có : AO = OC (gt) ( do D đối xứng với E qua O ) \(\widehat{ADC}=90^o\)(gt) . Vậy ADCE là hình chữ nhật

b) ADCE là hình chữ nhật thì AE // DC , AE = DC . Mà DC = BD ( do tam giác ABC cân ) . Suy ra , AE = BD 

=> ABDE là hình bình hành . I là trung điểm của AD thì I là trung điểm của BE

c) Áp dụng định lí Py - ta - go cho tam giác vuông ABD

\(AD=\sqrt{AB^2-\left(\frac{BC}{2}\right)^2}=\sqrt{10^2-6^2}=8\left(cm\right)\)

\(S_{\Delta OAD}=\frac{1}{2}S_{ADC}=\frac{1}{2}.\frac{1}{2}.AD.DC=\frac{1}{4}.8.6=12\left(cm\right)\)

d) Tứ giác ABDE là hình bình hành do đó AKDE là hình thang 

Để AKDE là hình thang cân thì KD = AE

Mà \(\hept{\begin{cases}KD=\frac{1}{2}AC\\AE=\frac{1}{2}BC\end{cases}\Rightarrow}AC=BC\)

\(\Rightarrow\Delta ABC\)là tam giác đều

Khách vãng lai đã xóa
Mai Anh
Xem chi tiết
Cô Hoàng Huyền
21 tháng 12 2017 lúc 11:25

A C B M D N I K E

a) Xét tứ giác ABCD có M là trung điểm AC và M cũng là trung điểm BD nên ABCD là hình bình hành (dhnb)

b) Tứ giác ABCD là hình bình hành nên BA // CD và BA = CD.

Vậy nên AN cũng song song và bằng CD. Suy ra ANDC là hình bình hành.

Lại có \(\widehat{NAC}=90^o\) nên ANDC là hình chữ nhật.

c) Ta chứng minh bổ đề:

Cho tam giác ABC có M là trung điểm cạnh AB. Đường thẳng đi qua M song song với cạnh BC và cắt cạnh AC tại điểm N. Chứng minh NA = NC.

Chứng minh:

Từ M vẽ tia song song với AC, cắt BC tại F. Tứ giác MNCF có hai cạnh MN và FC song song nhau nên là hình thang. Hình thang MNCF có hai cạnh bên song song nhau nên hai cạnh bên đó bằng nhau (theo tính chất hình thang). Vậy nên MF = NC (1)

Xét hai tam giác BMF và MAN, có: \(\widehat{MBF}=\widehat{AMN}\)  (hai góc đồng vị), BM = AM, \(\widehat{BMF}=\widehat{MAN}\) (hai góc đồng vị). 

\(\Rightarrow\Delta BMF=\Delta MAN\left(g-c-g\right)\Rightarrow MF=AN\left(2\right)\) 

Từ (1) và (2) suy ra NA = NC. Bổ đề được chứng minh.

Áp dụng bổ đề vào các tam giác AKC và BNI ta có: KI = IC; KI = BK

Vậy nên KC = 2BK.

d) Xét tam giác EBA và MNA có:

\(\widehat{EBA}=\widehat{MNA}\) (Hai góc so le trong)

AB chung 

\(\widehat{BAE}=\widehat{NAM}\left(=90^o\right)\)

\(\Rightarrow\Delta EBA=\Delta MNA\) (Cạnh góc vuông - góc nhọn kề)

\(\Rightarrow EB=MN\)

Vậy thì tứ giác EBMN là hình bình hành. Lại có \(EM\perp BN\) nên EBMN là hình thoi.

Để EBMN là hình vuông thì BN = EM hay AB = AM.

Do AC = 2AM nên tam giác ABC phải thỏa mãn: AC = 2AB thì EBMN là hình vuông.

Nguyễn Xuân Đạt
Xem chi tiết
Thuan Anhh
Xem chi tiết
ĐÀO THỊ HUYỀN DIỆU
Xem chi tiết
ngô trung hiếu
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 12 2021 lúc 21:37

a: Xét tứ giác AEDF có 

\(\widehat{AED}=\widehat{AFD}=\widehat{FAE}=90^0\)

Do đó: AEDF là hình chữ nhật

ngô trung hiếu
5 tháng 12 2021 lúc 9:43

giúp mình câu này nhé,ghi rõ ra cho mình luôn và cả hình nữa,cảm ơn mọi người

 

H.Ly
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 11 2021 lúc 22:41

a: Xét tứ giác AECD có

O là trung điểm của AC

O là trung điểm của ED

Do đó: AECD là hình bình hành

mà \(\widehat{ADC}=90^0\)

nên AECD là hình chữ nhật

Bin ShinXiao
Xem chi tiết