Cho tam giác nhọn ABC có đường cao AK. Kẻ KM vuông góc với AB tại M. Biết AK = 8cm, AB = 10cm, \(\widehat{ACB}=30^0\) Tính diện tích tứ giác BMNC
Cho tam giác ABC nhọn có đường cao AH. Kẻ HD vuông góc với AB tại D. Cho AH=8 cm, AB=10 cm
a,Tính HB, HD
b,Kẻ HE vuông góc với AC tại E. CMR: AD.AB=AE.AC
c, Biết góc ACB=30 độ, tính diện tích tứ giác BDEC
Cho tam giác ABC vuông tại A có AB = 12cm, AC =16cm. Vẽ đường cao AH.
a) Cm tam giác HBA đồng dạng tam giác ABC.
b) Tính BC,AH,BH.
c) Trên AH lấy điểm K sao cho AK = 3.6cm từ K kẻ đường thẳng song song với BC cắt AB tại M, cắt AC tại N.Tính diện tích tứ giác BMNC(Diện tích hình thang)
Ai biết hộ mình với
a) Xét \(\Delta HBA\) và \(\Delta ABC\) có:
\(\widehat{AHB}=\widehat{CAB}=90^0\)
\(\widehat{ABC}\) CHỤNG
suy ra: \(\Delta HBA~\Delta ABC\)
b) Áp dụng định lý Pytago vào tam giác vuông ABC ta có:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow\)\(BC^2=12^2+16^2=400\)
\(\Leftrightarrow\)\(BC=\sqrt{400}=20\)cm
Áp dụng hệ thức lượng trong tam giác vuông ta có:
\(AH=\frac{AB.AC}{BC}=\frac{12.16}{20}=9,6\)
\(BH=\frac{AB^2}{BC}=\frac{12^2}{20}=7,2\)
Cho tam giác ABC vuông tại A có AB =12 cm , AC= 16 cm. Vẽ đường cao AH. Trên AH lấy điểm K sao cho AK = 3,6 cm. Từ K kẻ đường thẳng song song BC và AC lần lượt tại M và N. Tính diện tích tứ giác BMNC
cho tam giác ABC vuông tại A, có AB = 12cm, AC=16cm. Vẽ đường cao AH
a. chứng minh: tam giác HBA đồng dạng với tam giác ABC
b. Tính BC,AH,BH
c.Vẽ đường phân giác AD của tam giác ABC. Tính BC, CD
d.Trên AH lấy điểm K sao cho AK=3.6cm, từ K kẻ đường thẳng song song với BC cắt AB và AC lần lượt là M và N. Tính diện tích tứ giác BMNC
cho Tam giác ABC(AB<AC) gọi M,N lần lượt là trung điểm của AB và AC, kẻ NH vuông góc với BC. Tính diện tích tứ giác BMNC biết BC=30cm, NH=8cm
xét tam giác ABC có: N là trug điểm của AC, M là trug điểm của AB => MN là đường trug bình trong tam giác ABC => MN= BC/2=30/2=15cm.diện tích tg BMNC là: (MN+BC)*NH/2 =(15+30)*8/2=180( cm2)
Cho tam giác ABC vuông tại B, đường cao BI. Biết AB = 10cm, BC = 12cm.
a) Tính AI, BI.
b) Qua A kẻ đường thẳng vuông góc với AB cắt BI tại K. Tính diện tích tứ giác ABCK ( ko cần vẽ hình )
a:
Áp dụng định lí Pytago vào ΔABC vuông tại B, ta được:
\(CA^2=BA^2+BC^2\)
\(\Leftrightarrow CA^2=10^2+12^2=244\)
hay \(CA=2\sqrt{61}\left(cm\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại B có BI là đường cao ứng với cạnh huyền AC, ta được:
\(\left\{{}\begin{matrix}\dfrac{1}{BI^2}=\dfrac{1}{BA^2}+\dfrac{1}{BC^2}\\BA^2=AI\cdot CA\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BI=\dfrac{60\sqrt{61}}{61}\left(cm\right)\\AI=\dfrac{50\sqrt{61}}{61}\left(cm\right)\end{matrix}\right.\)
Cho tam giác ABC vuông tại A, AH là đường cao. Kẻ CD là phân giác của góc ACB cắt AH tại I. a)C/m AH²=HB.HC b)Tính diện tích tam giác ACI biết AB=6cm, AC=8cm
a: ΔACB vuông tại A
mà AH là đường cao
nên AH^2=HB*HC
b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
CD là phân giác
=>DA/AC=DB/CB
=>DA/4=DB/5=6/9=2/3
=>DA=8/3cm
=>\(CD=\sqrt{8^2+\left(\dfrac{8}{3}\right)^2}=\dfrac{8}{3}\sqrt{10}\)
Xét ΔHCI vuông tại H và ΔACD vuông tại A có
góc HCI=góc ACD
=>ΔHCI đồng dạng với ΔACD
=>CI/CD=HC/AC
=>\(\dfrac{CI}{\dfrac{8}{3}\sqrt{10}}=\dfrac{6.4}{8}=\dfrac{4}{5}\)
=>\(CI=\dfrac{32}{15}\sqrt{10}\left(cm\right)\)
sin ACH=AB/BC=3/5
=>góc ACH=37 độ
=>góc ACI=18,5 độ
\(S_{ACI}=\dfrac{1}{2}\cdot\dfrac{32}{15}\sqrt{10}\cdot8\cdot sin18.5^0\simeq8,56\left(cm^2\right)\)
Cho tam giác ABC vuông tại A có AB = 12cm, AC =16cm. Vẽ đường cao AH.
a) Cm tam giác HBA đồng dạng tam giác ABC.
b) Tính BC,AH,BH.
c)Vẽ đường phân giác AD của tam giác ABC( D thuộc BC).Tính BD,CD
d) Trên AH lấy điểm K sao cho AK=3,6cm. Từ K kẻ đường thẳng song song BC cắt AB ,AC lần lượt tại M, N.
Tính diện tích tứ giác BMNC.
Cho tam giác ABC vuông tại A , AB=6cm, AC=8cm, kẻ đường cao AH
a, Cmr AH.BC=AB.AC
b, Gọi M,N lần lượt là hình chiếu của AH trên AB,AC. Cmr tâm giác AMN đồng dạng với tam giác ACB
c, Tính diện tích BMNC