Tìm m biết đồ thị hàm số y=(1-4m)x+m-2 đi qua điểm B(1;2)
biết rằng đồ thị hàm số y=(m+2)x+4m-1 đi qua điểm A (1;-5 ) tìm m
Thay x=1; y=-5, ta được:
\(-5=\left(m+2\right).1+4m-1=m+2+4m-1=3m+1\Leftrightarrow m=-2\)
1+4=3:)) Lộn so rỳ bạn nhé:((
ĐK: \(m\ne-2\)
Thay x=1, y=-5, ta được: \(-5=\left(m+2\right).1+4m-1=m+2+4m-1=5m+1\Leftrightarrow m=-\dfrac{6}{5}\left(tm\right)\)
Cho hàm số y=(1-2m)x+3 a) tìm m biết đồ thị hàm số đi qua điểm A(1;0) b) tìm m biết đồ thị hàm số đi qua điểm B(2;-4) c) tìm toạ độ giao điểm của 2 đồ thị hàm số ở câu a,b
a: Thay x=1 và y=0 vào (d), ta được:
1-2m+3=0
\(\Leftrightarrow m=2\)
Bài 1 :Cho hàm số y=(m-1)x+m+3
1, Tìm giá trị của m để đồ thị hàm số song song với đồ thị hàm số y=-2x+1
2, Tìm giá trị của m để đồ thị hàm số đi qua điểm (1;-4)
3, Tìm điểm cố định mà đồ thị của hàm số luôn đi qua\
Bài 2 : Cho hàm số y=(2m-1)x+m-3
1, Tìm m để đồ thị hàm số đi qua điểm (2;5)
2, Cmr đồ thị hàm số luôn đi qua 1 điểm cố định với mọi m. Tìm điểm cố định ấy
3, Tìm m để đồ thị hàm số cắt trục hoành tai điểm có hoành độ \(x=\sqrt{2}-1\)
2.Cho hàm số y = (m -1)x + m +3(1) a)Tìm giá trị của m để đồ thị hàm số đi qua điểm A(2;4)b) Tìm điểm cố định mà đồ thị hàm số (1) luôn đi qua.
\(a,\Leftrightarrow2m-2+m+3=4\Leftrightarrow m=1\\ b,\text{Gọi điểm cố định mà (1) luôn đi qua là }A\left(x_0;y_0\right)\\ \Leftrightarrow y_0=\left(m-1\right)x_0+m+3\\ \Leftrightarrow mx_0-x_0+m+3-y_0=0\\ \Leftrightarrow m\left(x_0+1\right)+\left(3-x_0-y_0\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}x_0+1=0\\3-x_0-y_0=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=-1\\y_0=4\end{matrix}\right.\Leftrightarrow A\left(-1;4\right)\)
Vậy (1) luôn đi qua A(-1;4)
Cho hàm số y = (2m + 5)x - 1 a) Tìm m biết đồ thị hàm số đi qua điểm A(- 2; 3) . b) Vẽ đồ thị hàm số với m tìm được ở câu a. c) Tìm m biết đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng 3.
Lời giải:
a. Vì đths đi qua $A(-2;3)$ nên:
$y_A=(2m+5)x_A-1$
$\Rightarrow 3=(2m+5)(-2)-1\Rightarrow m=\frac{-7}{2}$
b. ĐTHS sau khi tìm được $m$ có pt: $y=-2x-1$. Bạn có thể tự vẽ
c. ĐTHS cắt trục hoành tại điểm có hoành độ -3, tức là đi qua điểm $(-3,0)$
$\Rightarrow 0=(2m+5)(-3)-1$
$\Rightarrow m=\frac{-8}{3}$
Mọi người giúp em với ạ,em cảm ơn !
Bài 1: Cho đường thẳng d, y=(m-1)x+m
a)Tìm m để hàm số nghịch biến trên R
b) tìm m để đồ thị hàm số đi qua gốc tọa độ
c) Với m=2,vẽ đồ thị hàm số
d) Chứng tỏ rằng đường thẳng d luôn luôn đi qua 1 điểm cố định với mọi m,Tìm điểm đó
Bài 2: Cho 3 điểm A(2;4),B(-3;-1),C(2;1).Hãy chứng minh 3 điểm thẳng hàng
Bài 3: Cho hàm số y=ax-4
a) Tìm a biết đồ thị hàm số đi qua điểm M(2;5)
b)Vẽ đồ thị hàm số vừa tìm được
Bài 4 : Tìm hàm số y=ax+b,biết đồ thị hàm số của nó đi qua 2 điểm A(2;5) và B(-2;-3)
Bài 1: Cho hàm số bậc nhất y=(m-1)x+m+3.(d)
a)Tìm giá trị của m để đồ thị của hàm số song song với đồ thị hàm số y = - 2x + 1 .
b) Tìm giá trị của m để đồ thị của hàm số đi qua điểm (1;-4) .
c) Tìm điểm cố định mà đồ thị của hàm số luôn đi qua với mọi m
d) Tìm giá trị của m để đổ thị của hàm số tạo với trục tung và trục hoành một tamgiác có diện tích bằng 1(đvdt ).
tìm m thỏa mãn yêu cầu bài toán
a) đồ thị hàm số \(y=\dfrac{mx-1}{2x+m}\) có đường tiệm cận đứng đi qua điểm A (-1;\(\sqrt{2}\))
b) đường thẳng x = 1 là tiệm cận đứng của đồ thị hàm số \(y=\dfrac{x-2}{2x-m}\)
c) biết đồ thị hàm số \(y=\dfrac{\left(m+1\right)x+2}{x-n+1}\) nhận trục hoành và trục tung làm 2 đường tiệm cận. Tính m+n
d) đồ thị hàm số \(y=\dfrac{x-1}{x^2+2\left(m-1\right)x+m^2-2}\) có 2 đường tiệm cận đứng
a: \(\lim\limits_{x\rightarrow+\infty}\dfrac{mx-1}{2x+m}=\lim\limits_{x\rightarrow+\infty}\dfrac{m-\dfrac{1}{x}}{2+\dfrac{m}{x}}=\dfrac{m}{2}\)
\(\lim\limits_{x\rightarrow-\infty}\dfrac{mx-1}{2x+m}=\lim\limits_{x\rightarrow-\infty}\dfrac{m-\dfrac{1}{x}}{2+\dfrac{m}{x}}=\dfrac{m}{2}\)
Vậy: x=m/2 là tiệm cận đứng duy nhất của đồ thị hàm số \(y=\dfrac{mx-1}{2x+m}\)
Để x=m/2 đi qua \(A\left(-1;\sqrt{2}\right)\) thì \(\dfrac{m}{2}=-1\)
=>\(m=-1\cdot2=-2\)
b: \(\lim\limits_{x\rightarrow-\infty}\dfrac{x-2}{2x-m}=\lim\limits_{x\rightarrow-\infty}\dfrac{1-\dfrac{2}{x}}{2-\dfrac{m}{x}}=\dfrac{1}{2}\)
\(\lim\limits_{x\rightarrow+\infty}\dfrac{x-2}{2x-m}=\lim\limits_{x\rightarrow+\infty}\dfrac{1-\dfrac{2}{x}}{2-\dfrac{m}{x}}=\dfrac{1}{2}\)
=>x=1/2 là tiệm cận đứng duy nhất của đồ thị hàm số \(y=\dfrac{x-2}{2x-m}\)
=>Không có giá trị nào của m để đường thẳng x=1 là tiệm cận đứng của đồ thị hàm số \(y=\dfrac{x-2}{2x-m}\)
Cho hàm số y= (m-1)x + m +3
1) Tìm giá trị của m để đồ thị của hàm số song song với đồ thị hàm số y= -2x + 1.
2) Tim giá trị của m để đồ thị của hàm số đi qua điểm (1; -4).
3) Tìm điểm cố định mà đồ thị của hàm số luôn đi qua với mọi m.
4) Tim giá trị của m để đồ thị của hàm số tạo với trục tung và trục hoành một tam giác có diện tích bằng 1 (đvdt).
Vì hs y = (m-1)x +m +3 đi qua điểm (1; -4) nên ta đc :
-4 = (m-1) + m+3
<=> -4 = 2m + 2
<=> m =-3
1) Đặt tên cho dễ giải nè:
(d1) : y= (m-1) x + m+ 3
(d2) : y = -2x + 1
(d1) // (d2) <=> m - 1 = -2 và m+ 3 \(\ne\)1
<=> m = -1 và m \(\ne\)-2
1. để đồ thị của hàm số \(y=\left(m-1\right)x+m+3\) // với \(y=-2x+1\),
\(\left\{{}\begin{matrix}m-1=-2\\m+3\ne1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-1\\m\ne-2\end{matrix}\right.\)
2. để đi qua điểm (1;-4),
\(-4=m-1+m+3\\ \Leftrightarrow-4=2m+2\Leftrightarrow m=-3\)
3. \(y=\left(m-1\right)x+m+3\\ \Leftrightarrow x+y=mx+m+3\\ \Leftrightarrow x+y-3=m\left(x+1\right)\)
tọa độ điểm cố định là nghiệm của hpt
\(\left\{{}\begin{matrix}x+y-3=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=4\end{matrix}\right.\)
đ cđịnh M(-1;4)
4. \(y=\left(m-1\right)x+m+3\)
+ Khi x=0, y=m+3
+ khi y=0, \(x=\dfrac{-m-3}{m-1}\)
Để \(S=1\Rightarrow\dfrac{-m-3}{m-1}.\left(m+3\right)=2\\ \Leftrightarrow\left(m+3\right)^2=2\left(1-m\right)\\ \Leftrightarrow m^2+8m+7=0\Leftrightarrow\left(m+1\right)\left(m+7\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-7\end{matrix}\right.\)
Cho hàm số y = (m − 2)x + m
a) Tìm điều kiện của m để hàm số nghịch biến.
b) Vẽ đồ thị hàm số khi m = 1.
c) Tìm m để đồ thị hàm số đi qua điểm B(1; 2).
a: Để hàm số nghịch biến thì m-2<0
hay m<2
c: Thay x=1 và y=2 vào (d), ta được:
m-2+m=2
hay m=2