tìm m để đồ thị hàm số y=(m-1)x+2 cắt trục Ox Oy lần lượt tại A và B sao cho Soab = 2
Cho hàm số bậc nhất \(y=mx+2\) có đồ thị là d.
a) Tìm m để d cắt trục Ox và trục Oy lần lượt tại A và B sao cho tam giác OAB cân.
b) Tìm m để d cắt trục Ox và trục Oy lần lượt tại C và D sao cho tam giác OAB có \(\tan C=2\)
Để ĐTHS cắt cả 2 trục tọa độ \(\Rightarrow m\ne0\)
Khi đó ta có: giao điểm với trục hoành: \(mx+2=0\Rightarrow x=-\dfrac{2}{m}\)
Giao điểm với trục tung: \(y=m.0+2=2\)
a. \(A\left(-\dfrac{2}{m};0\right)\Rightarrow OA=\left|x_A\right|=\left|\dfrac{2}{m}\right|\)
\(B\left(0;2\right)\Rightarrow OB=\left|y_B\right|=2\)
\(OA=OB\Rightarrow\left|\dfrac{2}{m}\right|=2\Rightarrow m=\pm1\)
b. \(C\left(-\dfrac{2}{m};0\right);D\left(0;2\right)\Rightarrow\left\{{}\begin{matrix}OC=\left|\dfrac{2}{m}\right|\\OD=2\end{matrix}\right.\)
\(tanC=\dfrac{OD}{OC}=\left|m\right|=2\Rightarrow m=\pm2\)
Cho hàm số y = mx + 2 tìm m để đồ thị hàm số cắt hai trục Ox Oy lần lượt tại A B sao cho chu vi tam giác OAB = 3 + căn 5
Để tìm m để đồ thị hàm số cắt hai trục Ox và Oy tại A và B sao cho chu vi tam giác OAB là 3 + căn 5, ta cần xác định tọa độ của A và B.
Điểm A nằm trên trục Ox, nên tọa độ của A là (x_A, 0). Thay vào phương trình hàm số y = mx + 2, ta có:
0 = mx_A + 2
=> mx_A = -2
=> x_A = -2/m
Điểm B nằm trên trục Oy, nên tọa độ của B là (0, y_B). Thay vào phương trình hàm số y = mx + 2, ta có:
y_B = m*0 + 2
=> y_B = 2
Chu vi tam giác OAB được tính bằng công thức chu vi tam giác:
chu_vi = AB + OA + OB
Với OA = x_A và OB = y_B, ta có:
chu_vi = AB + x_A + y_B
chu_vi = AB + (-2/m) + 2
chu_vi = AB - (2/m) + 2
Theo đề bài, chu vi tam giác OAB là 3 + căn 5, nên ta có:
3 + căn 5 = AB - (2/m) + 2
căn 5 = AB - (2/m) + 1
AB = căn 5 + (2/m) - 1
Ta đã có tọa độ của A và B, và chu vi tam giác OAB. Giờ ta sẽ tính độ dài AB:
AB = căn((x_A - 0)^2 + (y_B - 0)^2)
AB = căn((-2/m)^2 + 2^2)
AB = căn(4/m^2 + 4)
AB = căn(4(1/m^2 + 1))
AB = 2căn(1/m^2 + 1)
So sánh với công thức đã tính được trước đó:
AB = căn 5 + (2/m) - 1
Ta có:
2căn(1/m^2 + 1) = căn 5 + (2/m) - 1
Bình phương cả hai vế của phương trình:
4(1/m^2 + 1) = 5 + 4/m^2 + 1 - 4/m
4/m^2 + 4 = 6 + 4/m^2 - 4/m
8/m^2 = 2 - 4/m
Nhân cả hai vế của phương trình cho m^2:
8 = 2m^2 - 4
2m^2 = 12
m^2 = 6
m = ±√6
Vậy, để đồ thị hàm số cắt hai trục Ox và Oy tại A và B sao cho chu vi tam giác OAB là 3 + căn 5, ta có hai giá trị của m: √6 và -√6.
Cho hàm số y=(m+1)x+3 ( m là tham số và m ≠-1) có đồ thị là đường thẳng (d)
a. tìm m để (d) cắt trục Ox,Oy lần lượt tại hai điểm A và B sao cho diện tích tam giác AOB =9
a: Tọa độ A là:
\(\left\{{}\begin{matrix}y=0\\\left(m+1\right)x+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x\left(m+1\right)=-3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=0\\x=-\dfrac{3}{m+1}\end{matrix}\right.\)
vậy: \(A\left(-\dfrac{3}{m+1};0\right)\)
Tọa độ B là:
\(\left\{{}\begin{matrix}x=0\\y=\left(m+1\right)\cdot x+3=0\left(m+1\right)+3=3\end{matrix}\right.\)
Vậy: B(0;3)
\(OA=\sqrt{\left(-\dfrac{3}{m+1}-0\right)^2+\left(0-0\right)^2}=\sqrt{\left(\dfrac{3}{m+1}\right)^2}=\left|\dfrac{3}{m+1}\right|\)
\(OB=\sqrt{\left(0-0\right)^2+\left(3-0\right)^2}=\sqrt{0+9}=3\)
Vì Ox\(\perp\)Oy
nên OA\(\perp\)OB
=>ΔOAB vuông tại O
=>\(S_{OAB}=\dfrac{1}{2}\cdot OA\cdot OB=\dfrac{1}{2}\cdot3\cdot\dfrac{3}{\left|m+1\right|}=\dfrac{9}{2\left|m+1\right|}\)
Để \(S_{AOB}=9\) thì \(\dfrac{9}{2\left|m+1\right|}=9\)
=>2|m+1|=1
=>|m+1|=1/2
=>\(\left[{}\begin{matrix}m+1=\dfrac{1}{2}\\m+1=-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=-\dfrac{1}{2}\\m=-\dfrac{3}{2}\end{matrix}\right.\)
1) Cho hàm số y=(1−m)x+m+2 (với m là tham số và m+1) có đồ thị là đường thẳng (d). a) Tìm m để ( d ) song song với đường thẳng y=2x−1. b) Tìm m để (d) cắt trục Ox, Oy lần lượt tại hai điểm A, B sao cho tam giác AOB vuông cân.
a) \(y=\left(1-m\right)x+m+2\left(d\right)\)
\(y=2x-1\left(d'\right)\)
\(\left(d\right)//\left(d'\right)\Leftrightarrow\left\{{}\begin{matrix}1-m=2\\m+2\ne-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m=-1\\m\ne-3\end{matrix}\right.\)
\(\Leftrightarrow m=-1\)
Vậy với \(m=-1\) để \(\left(d\right)//\left(d'\right)\)
b) \(\left(d\right)\cap\left(Ox\right)=A\left(x;0\right)\)
\(\Leftrightarrow\left(1-m\right)x+m+2=0\)
\(\Leftrightarrow x=\dfrac{m-1}{m+2}\)
\(\Rightarrow A\left(\dfrac{m-1}{m+2};0\right)\)
\(\Rightarrow OA=\sqrt[]{\left(\dfrac{m-1}{m+2}\right)^2}=\left|\dfrac{m-1}{m+2}\right|\)
\(\left(d\right)\cap\left(Oy\right)=B\left(0;y\right)\)
\(\Leftrightarrow\left(1-m\right).0+m+2=y\)
\(\Leftrightarrow y=m+2\)
\(\Rightarrow B\left(0;m+2\right)\)
\(\Rightarrow OB=\sqrt[]{\left(m+2\right)^2}=\left|m+2\right|\)
Để \(\Delta OAB\) là \(\Delta\) vuông cân khi và chỉ khi
\(\left|\dfrac{m-1}{m+2}\right|=\left|m+2\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{m-1}{m+2}=m+2\\\dfrac{m-1}{m+2}=-\left(m+2\right)\end{matrix}\right.\) \(\left(m\ne-2\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(m+2\right)^2=m-1\\\left(m+2\right)^2=1-m\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m^2+2m+4=m-1\\m^2+2m+4=1-m\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m^2+m+5=0\left(1\right)\\m^2+3m+3=0\left(2\right)\end{matrix}\right.\)
Giải \(pt\left(1\right):\Delta=1-20=-19< 0\)
\(\Rightarrow\left(1\right)\) vô nghiệm
Giải \(pt\left(2\right):\Delta=9-12=-3< 0\)
\(\Rightarrow\left(2\right)\) vô nghiệm
Vậy không có giá trị nào của \(m\) thỏa mãn đề bài
1)cho hàm số y=(1-m)x+m+2(với m là tham số và m≠1)có đồ thị là đường thẳng (d)
a.tìm m để hàm số dồng biến
b. tìm m để (d) cắt trục Ox,Oy lần lượt tại hai điểm A,B sao cho tam giác AOB cân
2)Cho hệ phương trình mx+4y=9
x+my =8( m là tham số)
a. giải hệ phương trình với m =1
b. tìm m để hệ phương trình có nghiệm duy nhất (x;y)thỏa mãn hệ thức 2x+y+38/m2-4=3
Bài 1:
a: Để hàm số y=(1-m)x+m+2 đồng biến trên R thì 1-m>0
=>-m>-1
=>m<1
b: Tọa độ A là:
\(\left\{{}\begin{matrix}y=0\\\left(1-m\right)x+m+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\\left(1-m\right)x=-m-2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{m+2}{m-1}\\y=0\end{matrix}\right.\Leftrightarrow OA=\left|\dfrac{m+2}{m-1}\right|\)
Tọa độ B là:
\(\left\{{}\begin{matrix}x=0\\y=\left(1-m\right)x+m+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=\left(1-m\right)\cdot0+m+2=m+2\end{matrix}\right.\)
=>\(OB=\left|m+2\right|\)
Để ΔOAB cân tại O thì OA=OB
=>\(\dfrac{\left|m+2\right|}{\left|m-1\right|}=\left|m+2\right|\)
=>\(\left|m+2\right|\left(\dfrac{1}{\left|m-1\right|}-1\right)=0\)
=>\(\left[{}\begin{matrix}m+2=0\\\dfrac{1}{\left|m-1\right|}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=-2\\m-1=1\\m-1=-1\end{matrix}\right.\)
=>\(m\in\left\{0;2;-2\right\}\)
1) Cho hàm số bậc nhất y = (2m -1)x-4 có đồ thị là đường thẳng (d) \(\left(m\ne\dfrac{1}{2}\right)\)
a) Vẽ đồ thị hàm số
b) Tìm tọa độ giao điểm C của (d) với đồ thị hàm số \(y=3x+2\left(d_1\right)\)
2) Tìm m để (d) cắt trục Ox , Oy lần lượt tại A , B sao cho tam giác AOB cân
1: Bạn bổ sung đề bài đi bạn
2: Tọa độ A là:
\(\left\{{}\begin{matrix}y=0\\\left(2m-1\right)x-4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\\left(2m-1\right)x=4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{4}{2m-1}\\y=0\end{matrix}\right.\)
=>\(OA=\sqrt{\left(\dfrac{4}{2m-1}-0\right)^2+\left(0-0\right)^2}=\dfrac{4}{\left|2m-1\right|}\)
Tọa độ B là:
\(\left\{{}\begin{matrix}x=0\\y=\left(2m-1\right)x-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=\left(2m-1\right)\cdot0-4=-4\end{matrix}\right.\)
=>OB=4
Để ΔOAB cân tại O thì OA=OB
=>\(\dfrac{4}{\left|2m-1\right|}=4\)
=>\(\dfrac{1}{\left|2m-1\right|}=1\)
=>\(\left|2m-1\right|=1\)
=>\(\left[{}\begin{matrix}2m-1=1\\2m-1=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2m=2\\2m=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=1\\m=0\end{matrix}\right.\)
Cho hàm số \(y=\left(m+1\right)x+3\) có đồ thị là đường thẳng (d).
Tìm m để đường thẳng (d) cắt hai trục Ox, Oy lần lượt tại A và B sao cho tam giác OAB có diện tích bằng 9
Tọa độ A là;
\(\left\{{}\begin{matrix}y=0\\\left(m+1\right)x+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-3}{m+1}\\y=0\end{matrix}\right.\Leftrightarrow OA=\dfrac{3}{\left|m+1\right|}\)
Tọa độ B là:
x=0 và y=(m+1)*0+3=3
=>OB=3
SOAB=9
=>1/2*OA*OB=9
=>1/2*9/|m+1|=9
=>1/2*1/|m+1|=1
=>1/|m+1|=2
=>|m+1|=1/2
=>m+1=1/2 hoặc m+1=-1/2
=>m=-1/2 hoặc m=-3/2
\(\text{Cho hàm số bậc nhất:y=ax+2(1)}\)
\(\text{a,Vẽ đồ thị hàm số khi }m=2\)
\(\text{b,Tìm m để đồ thị hàm số (1) cắt trục Ox và trục Oy lần lượt tại A và B sao cho tam giác OAB cân}\)
câu a: khi m= 2 => y=2x+2
với x=0=> y =2
với y=0 =>x -1
câu b : y = xm+2 cắt ox,oy lần lượt tại A,B mà tam giác OAB cân tại O nên OB=OA \(OA^2=OB^2\)
Với x=0=>y=2 => A(0,2) => \(0A=\sqrt{0^2+2^2}=2\)
Với y=0=> x= \(x=\frac{-2}{m}\)nên \(B\left(\frac{-2}{m},0\right)\) ,\(OB=\sqrt{\frac{4}{m^2}+0^2}=\sqrt{\frac{4}{m^2}}\)
theo giả thiết OA=OB nên \(\sqrt{\frac{4}{m^2}}=\sqrt{4}\Leftrightarrow m^2=1\Leftrightarrow\orbr{\begin{cases}m=1\\m=-1\end{cases}}\)